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Abstract. In this paper, we consider a numerical enclosure method for stationary
solutions of two dimensional regularized driven cavity problems. The infinite dimen-
sional Newton method takes an important role in our method, which needs to estimate
the rigourous bound for the norm of inverse of the linearized operator. The method can be
applied to the case for the large Reynolds numbers. Numerical examples which show the
actual usefullness of the method are presented.

1



M.T. Nakao, K. Nagatou and K. Hashimoto

1 Introduction

We consider the following steady state and homogeneous Navier-Stokes equations











−∆u+R · (u · ∇)u+ ∇p = 0 in Ω,
div u = 0 in Ω,

u = g on ∂Ω,
(1.1)

where u, p and R are the velocity vector, pressure and the Reynolds number, respectively

and the flow region Ω is a unit square (0, 1)×(0, 1) in R2. In what follows, for each rational

number m, let Hm(Ω) denote the L2-Sobolev space of order m on Ω. We suppose that the

function g = (g1, g2) satisfies g ∈ H1/2(∂Ω,R2). In the classical driven cavity problem,

we sometimes meet the irregular boundary conditions such that g /∈ H1/2(∂Ω,R2) for

which the problem (1.1) has no H1 solution(cf. [9]). In this paper, in order to avoid

such a difficulty, we only treat a kind of regularized problem. Namely, we assume that

there exists a function ϕ ∈ H2(Ω) satisfying (ϕy,−ϕx) = g on ∂Ω. And, particularly, for

comparison with the result obtained by Wieners [9], in our numerical examples we consider

the case of ϕ(x, y) = x2(1−x)2y2(1− y), though our method can also be applied to more

general Navier -Stokes problems. In [9], the numerical enclosure of the problem (1.1) was

studied for the small Reynolds numbers based on Plum’s method(e.g., [5]) incorporating

with the Newton-Kantorovich theorem. His method, however, can not be applied to the

large Reynolds numbers, because the verification condition could not be satisfied at all

for the large R because of the dependence on the Reynolds number. In the present paper,

we also use the Newton-like verification condition, but our method has an advantage that

it can also be applied to large Reynolds numbers, provided that the approximation space

is sufficiently accurate and that the exact inverse operator actually exists in the rigorous

sense.

In the following section, first, we translate the problem (1.1) into the stream function

formulation and introduce the linearized operator. Next, we present a numerical verifica-

tion method to assure the invertibility of the linearized operator as well as show a method

to estimate an upper bound of the norm of the inverse operator. An infinite dimensional

Newton’s method to prove numerically the existence of solutions for the original nonlinear

problem is derived in Section 3, and, finally, we will give some numerical results in Section

4.
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2 Invertibility of the linearized operator

The incompressibility condition in (1.1) admits us to introduce a stream function ψ

satisfying u = (∂ψ
∂y
, − ∂ψ

∂x
). Using this relation we can rewrite the equations (1.1) as











∆2ψ +R · J(ψ,∆ψ) = 0 inΩ,
ψ = ϕ on ∂Ω,
∂ψ
∂n

= ∂ϕ
∂n

on ∂Ω,
(2.1)

where J is a bilinear form defined by J(u, v) = ∂u
∂x

∂v
∂y

− ∂u
∂y

∂v
∂x

and ∂
∂n

means the normal

derivative. Further, newly setting u as ψ − ϕ, we have
{

∆2u+ ∆2ϕ+R · J(u+ ϕ,∆(u+ ϕ)) = 0 inΩ,
u = ∂u

∂n
= 0 on ∂Ω.

(2.2)

Our aim is to verify the existence of a weak solution u ∈ H2
0 (Ω) of (2.2), where H2

0 (Ω) ≡
{v ∈ H2(Ω) | v = ∂v

∂n
= 0 on ∂Ω}, and we adopt the inner product by < u, v >H2

0
≡

(∆u,∆v)L2 for u, v ∈ H2
0 (Ω), and the norm is defined by ‖u‖H2

0

≡ ‖∆u‖L2 for u ∈ H2
0 (Ω),

where (·, ·)L2 and ‖ · ‖L2 mean the inner product and the norm on L2(Ω), respectively.

In what follows, let Sh be the set of bicubic C2-spline functions on Ω with uniform and

rectangular partition of the mesh size h (e.g., [7]).

We first enclose an approximate solution uh ∈ Sh of (2.2) satisfying

(∆uh + ∆ϕ,∆vh)L2 + (R · J(u+ ϕ,∆(uh + ϕ)), vh)L2 = 0 for all vh ∈ Sh. (2.3)

Then the linearized operator at uh in weak sense is represented as follows:

Lu ≡ ∆2u+R · {J(uh + ϕ,∆u) + J(u,∆(uh + ϕ))}.

Defining the canonical scalar products we have

< ∆2u, v >H−2,H2

0
≡ (∆u,∆v)L2,

< J(u,∆u), v >H−2,H2

0
≡ (J(v, u),∆u)L2,

then L is considerd as the operator from H2
0 (Ω) to H−2(Ω). Our first aim is to verify

the existence of the inverse operator L−1 : H−2(Ω) → H2
0 (Ω) and, next, to formulate the

infinite dimensional Newton method for the nonlinear problem (2.2).

By direct computations, we find that for any q ∈ H−2(Ω) there exists a unique solution

v ∈ H2
0 (Ω) satisfying

{

∆2v = q in Ω,
v = ∂v

∂n
= 0 on ∂Ω.

(2.4)
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Now, for each q ∈ H−2(Ω), let Kq be the unique solution v ∈ H2
0 (Ω) of the equation (2.4),

then K : H−1(Ω) → H2
0 (Ω) is compact. Using the following compact operator on H2

0 (Ω)

F1(u) ≡ −R ·K{J(uh + ϕ,∆u) + J(u,∆(uh + ϕ))},

the equation Lu = 0 is equivalent to the fixed point equation

u = F1(u). (2.5)

Thus, owing to the linearity of the operator and the Fredholm alternative, in order to

verify the invertibility of the operator L, we only have to show the uniqueness of the

solution of (2.5).

Now let Ph : H2
0 (Ω) −→ Sh denote the H2

0 -projection defined by

(∆(u− Phu),∆vh)L2 = 0 for all vh ∈ Sh,

and we consider the constructive error estimations for Ph. At first, we obtain the following

interpolation error estimates(cf. [7]). In the present paper, we omitted the proofs of the

lemmas and theorems, which will be described in the forthcoming paper [1].

Lemma 1. Let IΩ denote the bicubic spline interpolation oprator on Ω. For any u ∈
H4(Ω) ∩H2

0 (Ω) we have

‖u− IΩu‖H2

0
≤ 2

h2

π2
‖∆2u‖L2. (2.6)

Using Lemma 1, the property

‖u− Phu‖H2

0

= inf
ξ∈Sh

‖u− ξ‖H2

0

≤ ‖u− IΩu‖H2

0

and some duality arguments, we have the following error estimates for Ph.

Lemma 2. For u ∈ H4(Ω) ∩H2
0 (Ω) we have

‖u− Phu‖H2

0

≤ 2
h2

π2
‖∆2u‖L2, (2.7)

‖u− Phu‖H1

0

≤
√

8
h3

π3
‖∆2u‖L2, (2.8)

‖u− Phu‖L2 ≤ 4
h4

π4
‖∆2u‖L2. (2.9)
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Now, as in [2] or [4], we decompose (2.5) into the finite and infinite dimensional parts,

and apply a Newton-like method only for the finite dimensional part, which leads to the

following operator:

N 1
h (u) ≡ Phu− [I − F1]

−1
h (Phu− PhF1(u)),

where I is the identity map on H2
0 (Ω). And we assumed that the restriction to Sh of the

operator Ph[I − F1] : Sh → Sh has the inverse [I −F1]
−1
h . The validity of this assumption

can be numerically checked in the actual computations.

We next define the compact operator T1 : H2
0 (Ω) −→ H2

0 (Ω) by

T1(u) ≡ N 1
h (u) + (I − Ph)F1(u),

then we have the following equivalence relation

u = T1(u) ⇐⇒ u = F1(u).

Then, our purpose is to find a unique fixed point of T1 in a certain set U ⊂ H2
0 (Ω)

which is called a ‘candidate set’. Given positive real numbers γ and α we define the

corresponding candidate set U by

U ≡ Uh ⊕ [α], (2.10)

where Uh ≡ {φh ∈ Sh | ‖φh‖H2

0

≤ γ}, [α] ≡ {φ⊥ ∈ S⊥ | ‖φ⊥‖H2

0

≤ α} and S⊥ means the

orthogonal complement of Sh in H2
0 (Ω). If the relation

T1(U) ⊂ int(U) (2.11)

holds, then by Schauder’s fixed point theorem and by the linearity of T1, there exists a

fixed point u of T1 in U and the fixed point is unique, i.e., u = 0, which implies that the

operator L is invertible. Decomposing (2.11) into finite and infinite dimensional parts we

have a sufficient condition for (2.11) as follows:

{

supu∈U ‖N 1
h (u)‖H2

0
< γ

supu∈U ‖(I − Ph)F1(u)‖H2

0

< α.
(2.12)

Now, by some arguments using the error estimations in Lemma 2, we have the following

theorem which yields a omputable sufficient condition for the verification condition (2.12).
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Theorem 1. Let {φi}1≤i≤N be a basis of Sh and define the following constants:

C1 = ‖∇(uh + ϕ)‖∞, C2 =

∥

∥

∥

∥

∥

∇∂(uh + ϕ)

∂x

∥

∥

∥

∥

∥

∞

+

∥

∥

∥

∥

∥

∇∂(uh + ϕ)

∂y

∥

∥

∥

∥

∥

∞

C3 = ‖∇∆(uh + ϕ)‖∞, Cp =
1

π
√

2
, M1 = ‖LTG−1L‖E,

K1 = 2R
h

π
C1 + 4R

h3

π3
C3,

K2 = 2R
h

π
C1 + 2

√
2R

h2

π2
C3Cp,

K3 =
√

2RM1
h

π
(2C1 + C2Cp) + 2

√
2RM1

h2

π2
C3Cp,

where ‖ · ‖E denotes the matrix norm corresponding to the Euclidian vector norm in RN ,

Cp is the Poincaré constant, the N dimensional matrix G = (Gij) is defined by

Gji ≡ R(J(uh + ϕ,∆φi) + J(φi,∆(uh + ϕ)), φj)L2 + (∆φi,∆φj)L2,

and D = LLT is a Cholesky decomposition for the matrix D = (Dij) defined by

Dij ≡ (∆φi,∆φj)L2.

For the above constants K1, K2 and K3, if the inequality

K1 +K2K3 < 1 (2.13)

holds then the operator L is invertible.

Next, we have the following estimation of the norm for the inverse of the linearized op-

erator, which plays an essential role to realize the Newton-like method for the verification

of the nonlinear problem (2.2).

Theorem 2. Assume that the invertibility condition (2.13) holds. Then using the

same constants in Theorem 1, it follows that

M2 ≡ ‖L−1‖B(H−2,H2

0
) ≤

√

√

√

√

(

K2M1 + 1

1 −K1 −K2K3

)2

+

(

K3(K2M1 + 1)

1 −K1 −K2K3

+M1

)2

.

3 Verification procedure for driven cavity flows

In this section, we assume that the invertibility of the linearized operator L is validated

by the method described in the previous section. As usual, e.g., [2], [3], [4], we will verify
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the existence of solutions for (2.2) in the neighborhood of ū satisfying

{

∆2ū = −∆2ϕ−R · J(uh + ϕ,∆(uh + ϕ)) in Ω,
ū = ∂ū

∂n
= 0 on ∂Ω.

(3.1)

Note that uh = Phū. Defining v0 ≡ ū − uh, we see that v0 ∈ S⊥ and, by the similar

arguments deriving Lemma 2, the error estimates for v0 can be obtained as follows:

‖v0‖H2

0
≤ 2

h2

π2
‖ − ∆2ϕ−R · J(uh + ϕ,∆(uh + ϕ))‖L2,

‖v0‖H1

0

≤
√

2
h

π
‖v0‖H2

0

,

‖v0‖L2 ≤ 2
h2

π2
‖v0‖H2

0
.

Writing w = u− ū and defining the following compact map on H2
0 (Ω)

F2(w) ≡ RK{J(uh + ϕ,∆(uh + ϕ)) − J(w + uh + v0 + ϕ,∆(w + uh + v0 + ϕ))}, (3.2)

we have the fixed point equation

w = F2(w), (3.3)

which is equivalent to (2.2).

Now we formulate the infinite dimensional Newton method for the equation (3.3). We

define the compact operator T2(w) ≡ L−1q(w) in H2
0 (Ω), where

q(w) ≡ R{J(uh + ϕ,∆(uh + ϕ)) − J(w + uh + v0 + ϕ,∆(w + uh + v0 + ϕ))

+ J(uh + ϕ,∆w) + J(w,∆(uh + ϕ))}.

Then we have the relation

w = F2(w) ⇐⇒ w = T2(w). (3.4)

We intend to find a fixed point of T2 in a set W defined by

W = {w ∈ H2
0 (Ω) | ‖w‖H2

0

≤ α}, (3.5)

where α is a positive number. If the relation

T2(W ) ⊂W (3.6)
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holds, then by Schauder’s fixed point theorem there exists a fixed point of T2 in W . Since

a sufficient condition for (3.6) is

sup
w∈W

‖T2(w)‖H2

0

≤ α, (3.7)

by estimating the left-hand side of (3.7), we obtain the following numerical condition for

the verification of solutions of the nonlinear problem (2.2).

Theorem 3. Assume that the invertibility condition (2.13) holds. Using the same

constants as in Theorem 1 and 2, and defining the constants: b ≡ ‖v0‖H2

0

, C4 ≡ 1
π
, if

there exists a real number α > 0 satisfying

M2R

{√
2CpC1b+ 2

√
2CpC3b

h2

π2
+ C2

4 (α+ b)2

}

≤ α, (3.8)

then there exists a fixed point of T2 in W . Here, the constant C4 comes from the embedding

estimates of the form ‖∇u‖L4 ≤ C4‖∆u‖L2 for u ∈ H2
0 (Ω) [8].

4 Numerical examples

In calculations, we used the interval arithmetic in order to avoid the effects of rounding

errors in the floating-point computations. All computations were carried out on the DELL

Precision WorkStation 650 (Intel Xeon 3.2GHz) using MATLAB (Ver. 6.5.1) and the

interval arithmetic toolbox INTLAB (Ver. 4.2.1) coded by Prof. Rump in TU Hamburg-

Harburg ([6]). The verification results are shown in Table 1, in which ’smallest α’ means

the smallest bound α satisfing the verification condition (3.8) and the solution u in (2.2)

is enclosed as ‖u− uh‖H2

0
(Ω) ≤ ‖v0‖H2

0
(Ω) + α.

Due to the computational cost, the mesh size h = 1/23 was the practical limit of

our computing system using interval arithmetic. For your reference, we illustrated the

result, in Table 2, where all computations were performed by using the usual floating

point arithmetic of double precision.

It seems that Wieners’ method can not be applied to the Reynolds number larger than

R = 20 in [9]. On the other hand we enclosed the stationary solution for the Reynolds

number over 130. As shown in Table 2, our method can be applied, in principle, to

any large Reynolds numbers, if we can use more accurrate approximation subspaces, i.e.,

smaller mesh size.
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Table 1: Verification Results for Driven Cavity Problem (h = 1/23)

R M1 M2 C1 C2 C3 ‖v0‖H2

0

smallest α

100 1.0429 1.9845 0.0625 0.7328 2.7149 1.6991e-3 2.3619e-3
110 1.0448 2.1856 0.0625 0.7342 2.7223 1.7099e-3 3.0394e-3
120 1.0467 2.4296 0.0625 0.7356 2.7299 1.7216e-3 4.0491e-3
130 1.0487 2.7315 0.0625 0.7371 2.7376 1.7343e-3 5.9244e-3
135 1.0497 2.9109 0.0625 0.7378 2.7416 1.7409e-3 8.4399e-3

Table 2: Verification Results for Driven Cavity Problem (h = 1/50)

R M1 M2 C1 C2 C3 ‖v0‖H2

0

smallest α

200 1.0346 1.7958 0.0625 0.7496 3.0410 3.8670e-4 3.9306e-4
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