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1 Introduction

In this dissertation, first we consider the solvability of the linear elliptic
boundary value problem of the form

Lu ≡ −∆u + b · ∇u + cu = g in Ω,
u = 0 on ∂Ω,

(1.1)

that is equivalent to the invertibility of the operator L on a certain function
space. Here, for n = 1, 2, 3, we assume that b ∈ (W 1

∞(Ω))
n
, c ∈ L∞(Ω), where

Ω ⊂ Rn is a bounded domain with piecewise smooth boundary. By using this
result, we present a procedure to compute the operator norm corresponding
to the inverse L−1.
Next, based upon the Newton-like method, we formulate a numerical ver-
ification condition for the existence of solutions of the following nonlinear
elliptic problems:

−∆u = f(x, u,∇u) x ∈ Ω,
u = 0 x ∈ ∂Ω.

(1.2)

Recently, the rapid development of the computer enables us to analyze
a more complicated problems in science and technology by numerical meth-
ods. Therefore, people working on various kinds of fields are interested in the
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guaranteed accuracy of the computed results. In such a situation, particu-
larly, the numerical verification methods for solutions of differential equations
become to be more and more important and interesting research area. As
well known, the Newton type methods are frequently utilized in guaranteed
computations for various problems. For finite dimensional problems, Alefeld
showed a procedure for matrix equations, that is, which is sometimes referred
as the Interval Gaussian Algorithm [2]. This result presented a basis of ver-
ified computations by using interval analysis, and, for example, it is applied
to INTLAB by Rump [14] for self-validating algorithms in linear algebraic
problems. Actually, by virtue of this numerical tools for guaranteed compu-
tations, we can also obtain exact and mathematical results by the computer
for infinite dimensional problems such as the nonlinear boundary value prob-
lems treated in this dissertation.

Several works, based upon the principle originally found by Nakao, e.g.,
[5][7], have been presented for the numerical verification methods for solu-
tions of (1.2). They use a method that consists of two procedures; one is a
finite dimensional Newton-like iterative process, the other is the computa-
tion of the error bounds caused by the gap between the finite and infinite
dimension in each iterative procedure. In general, the method for the finite
dimensional part utilizes a kind of the interval Newton method. However,
it has been recently observed that in the case of having the term with a
first order derivative ∇u, this iterative process sometimes fails due to the
divergence of the interval computations. In order to overcome this difficulty,
an improvement is considered, in [8], which adopts a technique that avoids
direct solving the interval system of equations for the finite dimensional part
but they used some techniques estimating the norm of the inverse for the
coefficient matrix.

In the present paper, we propose a new approach that utilizes the direct
estimation of the norm of linearized inverse operators for (1.2) and yields
further simplification of the verification procedures. This approach is in fact
an extension of the method presented in [8]. Namely, we first verify the in-
vertibility for linearized operators and compute guaranteed norm bounds for
its inverse by applying the same principle as for the existing method. Next,
we show the existence of solutions for (1.2) by proving the contractivity of
the Newton-like operator with a residual form. Another direct computational
method for bounds of the linearized operator has already been proposed by
Plum (see, e.g.,[11], [13] etc.) using the eigenvalue enclosure methods with
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a homotopic technique. His method uses some homotopic steps with addi-
tional base functions and verified computations for relatively small matrix
eigenvalue problems; this is considered a quite different approach from the
present method. On the other hand, our verification procedure for nonlinear
problems is very close to Plum’s method based upon the infinite dimensional
Newton’s method for the residual type. Therefore, a comparison of these
two methods, in respect to the total computational costs for verification of
nonlinear problems, would very much depend on the individual problem.

In the below, we denote the L2 inner product on Ω by (·, ·) and the norm
by ‖ · ‖L2 . And denote the usual Sobolev spaces on Ω by Hk(Ω) for any
positive integer k. We also use the following Sobolev spaces:

H1
0 (Ω) ≡ {v ∈ H1(Ω); v = 0 on ∂Ω},

V 1
∆(Ω) ≡ {v ∈ H1

0 (Ω); ∆v ∈ L2(Ω)}.

For v ∈ H1
0 (Ω), we define the H1

0 -norm by ‖v‖H1
0
≡ (∇v,∇v)1/2 and also

define the H2 semi-norm on Ω by, e.g., when n = 2,

|u|H2 =
(‖uxx‖2

L2 + 2 ‖uxy‖2
L2 + ‖uyy‖2

L2

) 1
2 .

For n = 1 or n = 3, analogously defined. And, < ·, · > denotes the dual-
ity pairing between H1

0 (Ω) and H−1(Ω) which is the dual space of H1
0 (Ω).

Moreover, we denote the finite dimensional subspace Sh of H1
0 (Ω) depend-

ing on the parameter h with nodal functions {φi}1≤i≤N . Notice that for all
notations, we sometimes denote the notation with Ω when it depends on Ω.
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2 Invertibility condition of linear elliptic op-

erators

In the present section, we consider the numerical verification condition of
invertibility for the operator L defined by (1.1), as well as we present a
method to estimate the norm of the inverse operator corresponding to L−1.

First, for each v ∈ H1
0 (Ω), we define the H1

0 -projection Phv ∈ Sh by

(∇(v − Phv),∇φh) = 0, ∀φh ∈ Sh.

Further, we assume the following a priori error estimation:

Assumption 1 For an arbitrary v ∈ V 1
∆(Ω), there exists a constant C(h)

depending on h such that

‖v − Phv‖H1
0
≤ C(h)‖∆v‖L2 .

Here, C(h) has to be numerically determined.

From this assumption, we obtain the following result.

Lemma 1 Assumption 1 is equivalent to the following inequality:

‖v − Phv‖L2 ≤ C(h)‖v − Phv‖H1
0
. (2.1)

This is called Aubin-Nitsche’s trick.

Proof: First, we assume that Assumption 1 holds. Let φ ∈ V 1
∆(Ω) be a

solution of the following Poisson equation :

−∆φ = v − Phv in Ω,
φ = 0 on ∂Ω.

Then, from (∇v −∇Phv,∇Phφ) = 0, it follows that

‖v − Phv‖2
L2 = (v − Phv, v − Phv) = (∇φ,∇v −∇Phv)

= (∇φ−∇Phφ,∇v −∇Phv)

≤ ‖φ− Phφ‖H1
0
‖v − Phv‖H1

0
.

Hence, using Assumption 1, we can obtain

‖v − Phv‖L2 ≤ C(h)‖v − Phv‖H1
0
.
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Next, we assume that the inequality (2.1) holds. Then, from the definition
of H1

0 -projection, we have

‖v − Phv‖2
H1

0
= (∇v −∇Phv,∇v −∇Phv)

= (∇φ,∇v −∇Phv)

= < ∆φ, v − Phv > .

If v ∈ V 1
∆(Ω) then, using (2.1), we have ‖v− Phv‖H1

0
≤ C(h)‖∆φ‖L2 . There-

fore, this proof is completed.

Notice that the invertibility of the elliptic operator L defined in (1.1) is
equivalent to the unique solvability of the fixed point equation

u = Au, (2.2)

where the compact operator A : H1
0 −→ H1

0 is defined by Au := ∆−1(b ·∇u+
cu) and where ∆−1 stands for the solution operator of the Poisson equation
with homogeneous boundary condition.

Now, according to the usual verification principle, e.g.,[7], we formulate
a sufficient condition for which the equation (1.2) has a unique solution. As
the preliminary, we define the matrices G = (Gi,j) and D = (Di,j) by :

Gi,j = (∇φj,∇φi) + (b · ∇φj, φi) + (cφj, φi),

Di,j = (∇φj,∇φi),

for 1 ≤ i, j ≤ N . Let L be a lower triangular matrix satisfying the Cholesky
decomposition: D = LLT . And we denote the matrix norm by ‖ ·‖E induced
from the Euclidean 2-norm ‖ · ‖E in RN .
Also, for κ1 = ‖ |b|E ‖L∞ , κ2 = ‖div b‖L∞ and κ3 = ‖c‖L∞ , we define the
following constants:

C1 = κ1 + Cpκ2,
C2 = Cpκ3,

C3 = κ1 + Cpκ3,
C4 = κ1 + C(h)κ3,

where ‖ · ‖L∞ means L∞ norm on Ω and Cp is a Poincaré constant such that
‖φ‖L2 ≤ Cp‖φ‖H1

0
for an arbitrary φ ∈ H1

0 (Ω). Then we have the following
main result of this paper.
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Theorem 2.1 If the matrix G is invertible and, for the constants defined
above,

C(h)
[
C3M(C1 + C2)C(h) + C4

]
< 1

holds, then the operator L defined in (1.1) is invertible. Here, M ≡ ‖LTG−1L‖E

and C(h) is the same constant as in Assumption 1.

Remark 1 The main cost for checking the invertibility condition consists
of the guaranteed estimation of ‖LTG−1L‖E. First, we compute the matrix
L by the interval Cholesky-decomposition. Next, by using the approximate
LU decomposition of G and some error estimates, we enclose the guaranteed
inverse G−1. Finally, we make a verified computation of the largest singular
value for the matrix LTG−1L, which is equal to the square root of the largest
eigenvalue of LTG−TDG−1L, to obtain the desired estimation.

Proof: First, as usual, we decompose the equation u = Au as

Phu = PhAu,

(I − Ph)u = (I − Ph)Au,

where I implies the identity map on H1
0 (Ω).

Next, according to the same formulation to that in [6],[7] etc., we define
two operators by

Nhu ≡ Phu− [I − A]−1
h Ph(I − A)u

and
Tu ≡ Nhu + (I − Ph)Au,

respectively, where [I − A]−1
h means the inverse of Ph(I − A)|Sh

: Sh −→ Sh.
Note that if we define the Galerkin approximation Ah on Sh of the operator
A, then [I − A]−1

h coincides with (I − Ah)
−1 on Sh. The existence of the

operator [I − A]−1
h is assumed, which is equivalent to the regularity of the

corresponding matrix, and is numerically followed by the unique solvability
of the linear system of equations in the verification process.
We now, for positive real numbers α and γ, define the set U = Uh + U⊥ by

Uh :=
{

uh ∈ Sh : ‖uh‖H1
0
≤ γ

}
,

U⊥ :=
{

u⊥ ∈ S⊥h : ‖u⊥‖H1
0
≤ α

}
,
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where S⊥h stands for the orthogonal complement of Sh in H1
0 (Ω). Then, by

the fact that u = Au is equivalent to u = Tu, in order to prove the unique
existence of a solution to (2.2) in the set U , it suffices to show the inclusion

TU
◦⊂ U due to the linearity of the equation (e.g., [15]), where TU

◦⊂ U
implies that the closure of TU is included by the interior of U .

Further notice that a sufficient condition of this inclusion can be written
as

‖NhU‖H1
0
≡ sup

u∈U
‖Nhu‖H1

0
< γ, (2.3)

‖(I − Ph)AU‖H1
0
≡ sup

u∈U
‖(I − Ph)Au‖H1

0

≤ C(h) sup
u∈U

‖b · ∇u + cu‖L2 < α, (2.4)

where we have used the estimate in Assumption 1.
In the below, we estimate ‖Nhu‖H1

0
and ‖b ·∇u+cu‖L2 in (2.3) and (2.4),

respectively.
First, for an arbitrary u = uh + u⊥ ∈ Uh + U⊥, setting ψh := Nh(uh + u⊥),
we have

ψh = uh − [I − A]−1
h Ph(I − A)(uh + u⊥)

= [I − A]−1
h PhAu⊥.

Now, note that for vh := PhAu⊥ ∈ Sh we have

(∇ψh,∇φh) + (b · ∇ψh, φh) + (cψh, φh) = (∇vh,∇φh), ∀φh ∈ Sh. (2.5)

Denoting

ψh :=
N∑

i=1

wiφi and vh :=
N∑

i=1

viφi, (2.6)

from (2.5), we have a matrix equation of the form

G~w = D~v. (2.7)

Here, ~w = (w1, w2, · · · , wN)T and ~v = (v1, v2, · · · , vN)T are coefficient vectors
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of ψh and vh, respectively. Therefore, from (2.6) and (2.7), it follows that

‖ψh‖2
H1

0
= ~wTD~w

= ~wTDG−1D~v

= (LT ~w)T (LTG−1L)(LT~v)

≤ ‖LT ~w‖E‖LTG−1L‖E‖LT~v‖E

= ‖ψh‖H1
0
‖LTG−1L‖E‖vh‖H1

0
.

Note that, from the above fact, we have ‖LTG−1L‖E = ‖[I−A]−1
h ‖H1

0
. Thus,

defining M ≡ ‖LTG−1L‖E, we obtain

‖ψh‖H1
0
≤ M‖PhAu⊥‖H1

0

= M‖Ph∆
−1(b · ∇u⊥ + cu⊥)‖H1

0

≤ M‖∆−1(b · ∇u⊥ + cu⊥)‖H1
0
. (2.8)

Next, letting ψ1 := ∆−1(b · ∇u⊥), some simple calculations yields that

‖ψ1‖2
H1

0
= (∇ψ1,∇ψ1) = (−∆ψ1, ψ1)

= (−b · ∇u⊥, ψ1)
≤ ‖u⊥‖L2‖div(bψ1)‖L2

≤ C(h)(κ1 + Cpκ2)α‖ψ1‖H1
0
,

(2.9)

where we have used the fact ‖u⊥‖L2 ≤ C(h)α. Furthermore, setting ψ2 :=
∆−1(cu⊥) and by applying the similar argument to the above, we have

‖ψ2‖H1
0
≤ C(h)Cpκ3α (2.10)

Thus, by (2.8) – (2.10), we obtain the following estimate for the finite di-
mensional part

‖NhU‖H1
0
≤ M(C1 + C2)C(h)α, (2.11)

where C1 ≡ κ1 + Cpκ2 and C2 ≡ Cpκ3. Next, observe that

‖b · ∇uh + cuh‖L2 ≤ κ1‖uh‖H1
0

+ Cpκ3‖uh‖H1
0

≤ (κ1 + Cpκ3)γ,

‖b · ∇u⊥ + cu⊥‖L2 ≤ κ1‖u⊥‖H1
0

+ κ3‖u⊥‖L2

≤ (κ1 + C(h)κ3)α.
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Therefore, by using (2.4) and the triangle inequality, we have

‖(I − Ph)AU‖H1
0
≤ C(h)(C3γ + C4α), (2.12)

where C3 ≡ κ1 + Cpκ3, C4 ≡ κ1 + C(h)κ3.
Now, from (2.11) and (2.12), the invertibility conditions (2.3) and (2.4)

are reduced to

M(C1 + C2)C(h)α < γ, (2.13)

C(h)(C3γ + C4α) < α. (2.14)

For an arbitrary small ε > 0, if we set γ := M(C1 + C2)C(h)α + ε, then the
condition (2.13) clearly holds. Therefore, by substituting it to (2.14) we have

C(h)
[
C3(M(C1 + C2)C(h)α + ε) + C4α

]
< α,

which is equivalent to

C(h)
[
C3M(C1 + C2)C(h) + C4

]
< 1.

Thus the desired conclusion is obtained.

Remark 2 The conditions (2.3) and (2.4) are equivalent to |||T ||| < 1 in
some scaled norm |||·||| in H1

0 , e.g., |||v|||2 ≡ ||Phv||2H1
0
/γ2+||(I−Ph)v||2H1

0
/α2.

Then, the invertibility of the operator I−T follows by the convergence of the
Neumann series.

When the coefficient function b of the first order term is not differentiable,
we have the following alternative condition.

Corollary 1 For the operator L defined in (1.1), let b ∈ (L∞(Ω))n. If

C(h)
[
C3M(Ĉ1 + C(h)C2) + C4

]
< 1,

then the operator L defined in (1.1) is invertible. Here, Ĉ1 = Cpκ1.
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Proof: The difference from the proof of Theorem 2.1 is only the part con-
cerning the estimates (2.9). Corresponding estimates are now

‖ψ1‖2
H1

0
= (−∆ψ1, ψ1) = (−b · ∇u⊥, ψ1)

≤ κ1‖u⊥‖H1
0
‖ψ1‖L2

≤ Cpκ1α‖ψ1‖H1
0
,

which proves the corollary.

2.1 A norm estimate of the inverse operator : Part 1

Now, our next purpose is the estimation of the operator norm ‖(I−A)−1‖H1
0

corresponding to the norm for L−1 : H−1 → H1
0 .

Theorem 2.2 Under the same assumptions in Theorem 2.1, provided that

κ ≡ C(h)
[
C3M(C1 + C2)C(h) + C4

]
< 1,

then the following estimation holds

‖(I − A)−1‖H1
0
≤ ‖M⊥ + Mh‖1/2

E =: M,

where the 2× 2 matrices M⊥, Mh are defined by

M⊥ =

[
τ 2
1 τ1τ2

τ1τ2 τ 2
2

]
, Mh =

[
τ 2
3 τ3τ4

τ3τ4 τ 2
4

]
.

Here, τi, (1 ≤ i ≤ 4) are given as follows

τ1 =
MC(h)C3

1− κ
, τ2 =

1

1− κ
,

τ3 = M
[
(C1 + C2)C(h)τ1 + 1

]
, τ4 = M(C1 + C2)C(h)τ2.

Proof: Let ψ be an arbitrary element in H1
0 (Ω). Then, by the Fredholm

alternative theorem, the invertibility of (I − A) implies that there exists a
unique element u ∈ H1

0 (Ω) satisfying (I − A)u = ψ. When we set

Nhu := Phu− [I − A]−1
h Ph((I − A)u− ψ),

Tu := Nhu + (I − Ph)(Au + ψ),
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(I − A)u = ψ is equivalent to Tu = u. Using the unique decompositions
u = uh + u⊥ and ψ = ψh + ψ⊥ in H1

0 (Ω) = Sh ⊕ S⊥h , by some simple
calculations, we have

uh = [I − A]−1
h (PhAu⊥ + Phψ),

u⊥ = (I − Ph)A(uh + u⊥) + (I − Ph)ψ.

Hence, taking notice of M = ‖[I −A]−1
h ‖H1

0
and the estimates in the proof of

Theorem 2.1, we have

‖uh‖H1
0
≤ M‖PhAu⊥ + Phψ‖H1

0

≤ M(C1 + C2)C(h)‖u⊥‖H1
0

+ M‖Phψ‖H1
0
, (2.15)

‖u⊥‖H1
0
≤ ‖(I − Ph)A(uh + u⊥)‖H1

0
+ ‖(I − Ph)ψ‖H1

0

≤ C(h)(C3‖uh‖H1
0

+ C4‖u⊥‖H1
0
) + ‖(I − Ph)ψ‖H1

0
. (2.16)

Substituting the estimate of ‖uh‖H1
0

in (2.15) into the last right-hand side of
(2.16) and solving it with respect to ‖u⊥‖H1

0
, we get

‖u⊥‖H1
0
≤ MC(h)C3

1− κ
‖Phψ‖H1

0
+

1

1− κ
‖(I − Ph)ψ‖H1

0

= τ1‖Phψ‖H1
0

+ τ2‖(I − Ph)ψ‖H1
0
. (2.17)

Thus we also have by (2.15)

‖uh‖H1
0
≤ M(C1 + C2)C(h)

(
τ1‖Phψ‖H1

0
+ τ2‖(I − Ph)ψ‖H1

0

)
+ M‖Phψ‖H1

0

≤ M
[
(C1 + C2)C(h)τ1 + 1

]
‖Phψ‖H1

0

+M(C1 + C2)C(h)τ2‖(I − Ph)ψ‖H1
0

= τ3‖Phψ‖H1
0

+ τ4‖(I − Ph)ψ‖H1
0
. (2.18)

Therefore, we obtain the desired conclusion from (2.17) and (2.18).

Moreover, we have the following estimates corresponding to Corollary 1.

Corollary 2 Under the same assumption as in Corollary 1, if

κ̂ ≡ C(h)
[
C3M(Ĉ1 + C(h)C2) + C4

]
< 1,
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then

‖(I − A)−1‖H1
0
≤ ‖M̂⊥ + M̂h‖1/2

E =: M̂,

where the 2× 2 matrices M⊥, Mh are defined by

M̂⊥ =

[
τ̂ 2
1 τ̂1τ̂2

τ̂1τ̂2 τ̂ 2
2

]
, M̂h =

[
τ̂ 2
3 τ̂3τ̂4

τ̂3τ̂4 τ̂ 2
4

]
.

Here, τ̂i, (1 ≤ i ≤ 4) are given as follows

τ̂1 =
MC(h)C3

1− κ̂
, τ̂2 =

1

1− κ̂
,

τ̂3 = M
[
(Ĉ1 + C(h)C2)τ̂1 + 1

]
, τ̂4 = M(Ĉ1 + C(h)C2)τ̂2.

We now note that the following a priori estimate of the solution to (1.1)
is obtained.

Theorem 2.3 It follows that

‖u‖H1
0
≤ ‖(I − A)−1‖H1

0
‖g‖H−1 ,

where the H−1-norm ‖ · ‖H−1 is defined by

‖g‖H−1 ≡ sup
φ∈H1

0 (Ω)

< g, φ >

‖φ‖H1
0

.

Particularly,

‖u‖H1
0
≤ Cp‖(I − A)−1‖H1

0
‖g‖L2 for g ∈ L2(Ω).

Indeed, defining ψ := −∆−1g, then taking account that (I − A)u = ψ and
that

‖ψ‖2
H1

0
= (∇ψ,∇ψ) =< −∆ψ, ψ >=< g, ψ >≤ ‖g‖H−1‖ψ‖H1

0
.

The second part follows from the Poincaré inequality.
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2.2 A norm estimate of the inverse operator : Part 2

In this subsection, we show the estimate for the solution of the linear equation
(1.1) by using slightly different manner from the argument in the previous
subsection.

Our method needs the constructive a priori error estimate between the
function and its projection. In this estimation, the orthogonal property of the
projection usually plays an important role. For the error analysis, there are
many results which use this orthogonality([9][12][16][19]). However, in some
case, e.g., [3], we need to get the desired estimates without this property.
Therefore, we derive the following result in the general case.

Theorem 2.4 Under the same assumptions in Theorem 2.1 and 2.2, pro-
vided that κ < 1 and let u ∈ H1

0 (Ω) be a unique solution for the linear
equation (1.1), that is, Lu = g. Then, we have the following estimation:

‖u‖H1
0
≤ Mh‖g‖H−1 +M⊥‖(I − Ph)∆

−1g‖H−1 ,

where Mh ≡ (τ 2
1 + τ 2

3 )1/2 and M⊥ ≡ (τ 2
2 + τ 2

4 )1/2.
Moreover, if g ∈ L2(Ω), then

‖u‖H1
0
≤ M∗‖g‖L2 ,

where M∗ ≡ CpMh+C(h)M⊥. In this case, we obtain the following a priori
estimation:

‖u− Phu‖H1
0
≤ CL(h)‖g‖L2 ,

where the constant CL(h) is taken as CL(h) ≡ C(h)(MCpC3 + 1)τ2.

Proof: The argument of the proof is very similar to that in Theorem 2.2.
So, setting ψ = −∆−1g, we rewrite (2.17) and (2.18) as

‖u⊥‖H1
0
≤ τ1‖Phψ‖H1

0
+ τ2‖(I − Ph)ψ‖H1

0
,

‖uh‖H1
0
≤ τ3‖Phψ‖H1

0
+ τ4‖(I − Ph)ψ‖H1

0
.
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From the above, we have

‖u‖2
H1

0
= ‖u⊥‖2

H1
0

+ ‖uh‖2
H1

0

≤
(
τ1‖Phψ‖H1

0
+ τ2‖(I − Ph)ψ‖H1

0

)2

+
(
τ3‖Phψ‖H1

0
+ τ4‖(I − Ph)ψ‖H1

0

)2

≤
[
(τ 2

1 + τ 2
3 )1/2‖Phψ‖H1

0
+ (τ 2

2 + τ 2
4 )1/2‖(I − Ph)ψ‖H1

0

]2

≤
[
Cp(τ

2
1 + τ 2

3 )1/2 + C(h)(τ 2
2 + τ 2

4 )1/2
]2

‖g‖2
L2 ,

where we have used the fact that ‖Phψ‖H1
0
≤ ‖ψ‖H1

0
together with Theorem

2.3 and Assumption 1. Thus, the proof is completed.

We now obtain the following estimates corresponding to Corollary 1 and 2.

Corollary 3 Under the same assumptions in Corollary 1 or 2, provided that
κ̂ < 1 and let u ∈ H1

0 (Ω) be a unique solution for the linear equation (1.1),
that is, Lu = g. Then, we have the following estimation:

‖u‖H1
0
≤ M̂h‖g‖H−1 + M̂⊥‖(I − Ph)∆

−1g‖H−1 ,

where M̂h ≡ (τ̂ 2
1 + τ̂ 2

3 )1/2 and M̂⊥ ≡ (τ̂ 2
2 + τ̂ 2

4 )1/2.
Moreover if g ∈ L2(Ω), then

‖u‖H1
0
≤ M̂∗‖g‖L2 ,

where M̂∗ ≡ CpM̂h+C(h)M̂⊥. In this case, we obtain the following a priori
estimation:

‖u− Phu‖H1
0
≤ ĈL(h)‖g‖L2 ,

where the constant ĈL(h) is taken as ĈL(h) ≡ C(h)(MCpC3 + 1)τ̂2.
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3 A computational procedure for the constant

C(h) in nonconvex polygonal domains

In this section, we introduce a computational procedure of the a priori error
estimation for nonconvex nonsmooth domains.

Remark 3 Notice that if Ω is rectangular then it follows that C(h) = C0h,
where h is the maximum mesh size and the constant C0 is given by the fol-
lowing.

C0 =

{
1/π if the uniform piecewise bilinear rectangular element [16],

1/(2π) if the uniform piecewise biquadratic rectangular element [10].

Moreover, if we consider the uniform piecewise linear triangular element, we
have C0 = 1/2.

Now, for nonconvex polygonal domains, a procedure is presented in [19].
We briefly describe this technique below.

Let Ω∗ be a convex polygonal domain which includes Ω. We take Ωout as
a residual domain such that Ω∗ = (Ω ∪ Ωout)\∂(Ω ∪ Ωout) (see Figure 1).

Ωout

Ω

Ω∗

or

Ωout

Ω

Ω∗

Figure 1: A convex extensional of the domain

Let S∗h be a finite element subspace of H1
0 (Ω∗). Assume that finite element

subspaces Sh and S∗h satisfy Sh ⊂ S∗h, and

Ph : H1
0 (Ω) → Sh, P ∗

h : H1
0 (Ω∗) → S∗h

15



are the H1
0 -projrction (see Figure 2). And we extend an arbitrary v ∈ H1

0 (Ω)
to the function on Ω∗ with v = 0 in Ωout, which belongs to H1

0 (Ω∗) and is
also denoted by v, then it follows that

‖v − Phv‖L2(Ω) ≤ C0h
(
1 + K2

)1/2 ‖v − Phv‖H1
0 (Ω),

where C0 is a constant depending on Ω∗ and finite elements, and K is defined
by

K ≡ sup
v∈H1

0 (Ω)

‖P ∗
hv − Phv‖L2(Ω)

‖P ∗
hv − Phv‖L2(Ωout)

.

¡
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¡
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¡
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¡
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¡
¡
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p p p
p p p p

p p p p
p p p p p p

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p

Figure 2: The image of Phv and P ∗
hv for v · · ·

Notice that K can be computed as the matrix eigenvalue problem, but,
it has some negative order in the mesh size h. Combining this procedure and
Lemma 1, we can obtain the a priori constant in Assumption 1 as C(h) =
C0h(1 + K2)1/2 (see [19] for details).
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4 Applications

In this section, we mention about the actual applications of the results ob-
tained in the previous section to the verification of solutions for the nonlinear
elliptic problem (1.2). We assume that the nonlinear map f(u) ≡ f(·, u,∇u)
from H1

0 (Ω) into L2(Ω) is continuous and bounded.

4.1 Preliminary

In this subsection, we transform the original boundary value problem (1.2)
into the so-called residual equation by using an approximate solution ũh ∈
Vh ⊂ H1

0 (Ω) defined by

(∇ũh,∇φh) = (f(ũh), φh), ∀φh ∈ Vh, (4.1)

where Vh denotes the finite element subspace for the approximation. Usually,
Vh coincides with Sh, but sometimes it does not (e.g. Section 5 in this pa-
per). For the effective computation of the solution for (4.1) with guaranteed
accuracy, refer, for example, [1], [14] etc.

Next, we define the ū ∈ V 1
∆(Ω) by the solution of Poisson’s equation :

−∆ū = f(ũh) in Ω,
ū = 0 on ∂Ω.

Further, let define residues by

u− ũh = (u− ū) + (ū− ũh), w := u− ū, v0 := ū− ũh. (4.2)

Note that v0 is an unknown function but its norm can be computed by an a
priori and a posteriori techniques (e.g., see [9], [17]). Thus, using the residues
in (4.2), concerned problem is reduced to the following residual form

−∆w = f(w + v0 + ũh)− f(ũh) in Ω,
w = 0 on ∂Ω.

(4.3)

Hence, denoting the Fréchet derivative at ũh by f ′(ũh), the Newton-type
residual equation for (4.3) is written as:

−∆w − f ′(ũh)w = gr(w) in Ω,
w = 0 on ∂Ω,

17



where gr(w) ≡ f(w + v0 + ũh)− f(ũh)− f ′(ũh)w.
In the above, we assumed that the approximate solution ũh is defined as

an element in H1
0 (Ω), i.e., C0-element. When we use the function satisfying

ũh ∈ Vh ⊂ H2(Ω), i.e., C1-element, we can get more simpler residual Newton-
type equation without v0 of the form

−∆w − f ′(ũh)w = gd(w) in Ω,
w = 0 on ∂Ω,

where w := u − ũh and gd(w) := f(w + ũh) + ∆ũh − f ′(ũh)w. For another
type of simple residual formulation for C0-element, refer [6] or [13] in which
some H−1 arguments are effectively used.

4.2 Verification conditions

We now write down again the nonlinear boundary value problem of the form:

Lw ≡ −∆w − f ′(ũh)w = g(w) in Ω,
w = 0 on ∂Ω,

(4.4)

where g(w) ≡ gr(w) or g(w) ≡ gd(w). If L is invertible, then (4.4) is rewritten
as the fixed point form

w = F (w)
(≡ L−1g(w)

)
. (4.5)

Notice that the Newton-like operator F in (4.5) is compact on H1
0 (Ω) from

the assumptions on f , and that it is expected to be a contraction map on
some neighborhood of zero.
Therefore, we consider the set, which we often refer as the candidate set, of
the form Wα ≡ {w ∈ H1

0 (Ω) : ‖w‖H1
0
≤ α}.

First, for the existential condition of solutions, we need to choose the set
Wα, which is equivalent to determine a positive number α, satisfying the
following criterion based on the Schauder fixed point theorem:

F (Wα) ⊂ Wα. (4.6)

And next, for the proof of local uniqueness within Wα, the following contrac-
tion property is needed on the same set Wα in (4.6):

‖F (w1)− F (w2)‖H1
0
≤ k‖w1 − w2‖H1

0
, ∀w1, w2 ∈ Wα, (4.7)
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for some constant 0 < k < 1. Notice that, in the above case, the Schauder
fixed point theorem can be replaced by the Banach fixed point theorem,
which might yields an advantage if we apply our method to noncompact
problems.
For (4.6), from the theorem 2.3, a sufficient condition can be written as

‖F (Wα)‖H1
0
≡ sup

w∈Wα

‖F (w)‖H1
0

≤ M1 sup
w∈Wα

‖g(w)‖L2 ≤ α, (4.8)

where M1 ≡ min{CpM,M∗}, and M, M∗ are the norms of the operator
L−1 : H−1 → H1

0 defined in the theorems 2.2 and 2.4.
On the other hand, for the verification of local uniqueness condition (4.7) on
Wα, in general, we use the following deformation:

g(w1)− g(w2) = Φ(w1, w2)(w1 − w2),

where Φ(w1, w2) denotes a function in w1 and w2, for example, if g(w) = w2,
then Φ(w1, w2) = w1 + w2. Therefore, the condition (4.7) reduces to finding
a constant 0 < k < 1 satisfying the inequality of the form

M1‖Φ(w1, w2)(w1 − w2)‖L2 ≤ k‖w1 − w2‖H1
0
, ∀w1, w2 ∈ Wα. (4.9)
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5 Numerical examples

In this section, we present the following four examples, and we show numer-
ical results on the invertibility of linearized operators and the existence of
solutions of nonlinear problems in next two subsections.

Example 1 (Plum’s example)[12]

−∆u = u

(
λ− 1

2
|∇u|2

)
in Ω,

u = 0 on ∂Ω,
(5.1)

where Ω = (0, 1)2 and λ > 0 is a parameter.
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Figure 3: Approximate solutions to Example 1
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Example 2 (Allen-Cahn equation)

−∆u = λu(u− a)(1− u) in Ω,
u = 0 on ∂Ω,

(5.2)

where Ω = (0, 1)2 and a > 0, λ > 0 are parameters.
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Figure 4: Approximate solutions to Example 2 for a = 0.01 and λ = 150

Example 3 (Emden’s equation)

−∆u = u2 in Ω,
u = 0 on ∂Ω,

(5.3)

where Ω ≡ Ωco = (0, 1)2 or Ωnon = (0, 1)2\[0, 1
3
]2.
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Figure 5: Approximate solutions to Example 3
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Example 4 (Burgers equation)

∆u = λ(u · ∇)u in Ω,
u = ϕ(x, y) on ∂Ω,

(5.4)

where Ω = (0, 1)2, ϕ(x, y) = xy(1− y) and λ > 0 is a parameter.
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Figure 6: Approximate solutions to Example 4

5.1 Verification results on the invertibility of the lin-
earized operator

First, we consider the invertibility of the linearized operators for examples
which are shown above.

For the examples 1-2 and 3 in the nonconvex domain, the linearized op-
erators L in (4.4) at the approximate solution ũh ∈ Vh are given as follows
:

Lw ≡ −∆w + ũh(∇ũh · ∇w)−
(

λ− 1

2
|∇ũh|2

)
w. (Example 1)

Lw ≡ −∆w + λ
[
a− 2(a + 1)ũh + 3ũ2

h

]
w, (Example 2)

Lw ≡ −∆w − 2ũhw, (Example 3)

Using piecewise biquadratic C0-finite element space Sh with several mesh
sizes, the constant C0 for the a priori constant C(h) in Assumption 1 can be
taken as 1/(2π) (see Section 3 and [9]).
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Here, for the linear operator Lv = −∆v + b · ∇v + cv, we use again
notations κi, (1 ≤ i ≤ 3) as

κ1 = ‖ |b|E ‖L∞ , κ2 = ‖div b‖L∞ , κ3 = ‖c‖L∞ .

We show numerical verification results for the examples 1-2 and 3 in
Tables 1-3 and 4, respectively. Notice that in Examples 1 and 4, for each
w ∈ H1

0 (Ω), g(w) in (4.4) does not belong to L2(Ω). Namely, for the example
1, g(w) = gr(w) or g(w) = gd(w) is given as

gr(w) ≡ (w + v0 + ũh)

(
λ− 1

2
|∇(w + v0 + ũh)|2

)
− ũh

(
λ− 1

2
|∇ũh|2

)

+ũh(∇ũh · ∇w)−
(

λ− 1

2
|∇ũh|2

)
w,

gd(w) ≡ (w + ũh)

(
λ− 1

2
|∇(w + ũh)|2

)
+ ∆ũh

+ũh(∇ũh · ∇w)−
(

λ− 1

2
|∇ũh|2

)
w,

for ũh ∈ Vh = Sh 6⊂ H2(Ω) or ũh ∈ Vh ⊂ H2(Ω), respectively. So, for the
term w|∇w|2 in g(w), we use the candidate set such as

Wα ≡
{
w ∈ H1

0 (Ω) ∩ L∞(Ω), ∇w ∈ L4(Ω) : max{‖w‖L∞ , ‖∇w‖L4} ≤ α
}

,

for solutions of (5.1).

Then, from the definition of the candidate set, we have to estimate ‖w‖L∞

and ‖∇w‖L4 . A procedure for these estimates is presented in [11][12], and
we introduce this details in the below.

Now, for an arbitrary v ∈ H2(Ω) ∩ H1
0 (Ω), we assume that there exist

constants Mi, (0 ≤ i ≤ 3) such that

‖v‖L2 ≤ M0‖Lv‖L2 , ‖v‖H1
0
≤ M1‖Lv‖L2 ,

‖∆v‖L2 ≤ M2‖Lv‖L2 , |v|H2 ≤ M3‖Lv‖L2 ,

where | · |H2 denotes the H2-seminorm. For example, when the constant M1

is obtained by our method, it follows that

M0 ≤ CpM1, M2 ≤ 1 + κ1M1 + κ3M0.
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Moreover, if Ω is convex then we have M3 ≤M2.
Then, from the constructive approach to the imbedding theory, it follows

that

‖v‖L∞ ≤ K0‖v‖L2 + K1‖v‖H1
0

+ K2|v|H2 ≤ M∞‖Lv‖L2 ,

‖∇v‖L4 ≤
[
‖v‖L∞(‖∆v‖L2 + 2|v|H2)

]1/2

≤ M4‖Lv‖L2 ,

where

M∞ := K0M0 + K1M1 + K2M3,

M4 :=
[
M∞(M2 + 2M3)

]1/2

,

and Ki, (0 ≤ i ≤ 2) are positive constants depending on the domain. In
particular, we can take these constants as

K0 =





0
1

1.0708

if n = 1
if n = 2
if n = 3

,

K1 =





1

1.1548
√

2/3

1.6549
√

3/3

if n = 1
if n = 2
if n = 3

,

K2 =





0

0.22361
√

28/45

0.41413
√

57/45

if n = 1
if n = 2
if n = 3

,

if Ω = (0, 1)n.
Therefore, the criterion of the verification in (4.8) is reduced to the fol-

lowing inequality.

‖F (Wα)‖X ≤ max{M∞,M4} sup
w∈Wα

‖g(w)‖L2 ,

when ‖w‖X = max{‖w‖L∞ , ‖∇w‖L4}.
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Table 1: Verification results for Example 1 for Vh = Sh 6⊂ H2(Ω) and λ = 25

1/h M1 M̂1 M κ1 κ2 κ3 Cp C(h)

5 — Fail 2.0337 6.1496 — 25.00 1/(
√

2π) h/(2π)

10 — 1.5314 2.0351 6.3278 — 25.00 1/(
√

2π) h/(2π)

20 — 0.6874 2.0353 6.2235 — 25.00 1/(
√

2π) h/(2π)

M̂1 ≡ min{CpM̂,M̂∗}.
Table 2: Verification results for Example 1 for Vh ⊂ H2(Ω) and λ = 25

1/h M1 M̂1 M κ1 κ2 κ3 Cp C(h)

5 3.7677 Fail 2.0338 6.2295 66.35 25.00 1/(
√

2π) h/(2π)

10 0.6075 1.4491 2.0352 6.2133 71.14 25.00 1/(
√

2π) h/(2π)

20 0.4912 0.6855 2.0353 6.1990 69.74 25.00 1/(
√

2π) h/(2π)

Table 3: Verification results for Example 2 for a = 0.01 and λ = 150
Upper Lower

1/h M1 M κ1 κ2 κ3 M1 M κ1 κ2 κ3

5 Fail 1.4714 0 0 129.32 0.9571 2.5731 0 0 47.36
10 0.5758 1.4708 0 0 129.57 0.6570 2.5844 0 0 47.24
20 0.3786 1.4730 0 0 128.50 0.5994 2.5853 0 0 46.79

It can be taken as Cp = 1/(
√

2π) and C(h) = h/(2π). Here, Upper and
Lower correspond to the upper and lower solutions of (5.2) in Figure 4.

Table 4: Verification results for Example 3 for Ωnon

1/h M1 M κ1 κ2 κ3 Cp C(h)

12 Fail 3.7029 0 0 74.4134
√

8/(3π) 2.5880·h/(2π)

24 8.7169 3.6992 0 0 74.1008
√

8/(3π) 3.2017·h/(2π)

We take the approximate finite element subspace Vh as Vh = Sh for Tables
3 and 4.
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5.2 Verification results for the existence and local unique-
ness of solutions of nonlinear problems

We show verification results for the existence and local uniqueness of solutions
for Examples 3 and 4. In this subsection, we take the same approximation
subspace Sh as before. That is the piecewise biquadratic C0-finite element
space with the uniform and rectangular mesh.

In the case of the example 3, L and g(w) in (4.4) are given as follows

Lw ≡ −∆w − 2ũhw,

gr(w) ≡ w2 + 2v0w + v2
0 + 2ũhv0,

gd(w) ≡ w2 + ũ2
h + ∆ũh.

Therefore, for the candidate set

Wα = {w ∈ H1
0 (Ω) : ‖w‖H1

0
≤ α},

the condition (4.8) is given by

M1 supw∈Wα
‖w2 + 2v0w + v2

0 + 2ũhv0‖L2 ≤ α,
or

M1 supw∈Wα
(‖w2‖L2 + ‖w0‖L2) ≤ α,

(5.5)

where w0 = ∆ũh + ũ2
h.

By (5.5) and some calculations using the several kinds of norms, e.g., [6], [17]
etc., we obtain the existential condition (4.8) of the form

M1(E2α
2 + E1α + E0) ≤ α, (5.6)

where Ei, 0 ≤ i ≤ 2, are constants dependent on the norms of ũh and v0. It
implies that, for any positive number α satisfying the quadratic inequality
(5.6), there exists at least one solution in the set of the form ũh + v0 + Wα.
Note that such an α exists if and only if M1(E1 +2

√
E0E1) ≤ 1. Also, notice

that a sufficient condition corresponding to the relation (4.9) can be similarly
and readily treated, and it leads to a simple linear inequality in α such that
M1(2E2α + E1) < 1. Thus, we can determine two bounds for α, i.e., αE

and αU , for which we assure the existence and the uniqueness of solutions,
respectively.
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Table 5: Verification results for Example 3 for Ωco

1/h M1 E2 E1 E0 smallest αE largest αU

5 1.5018 1/π2 0.2441 4.0418 Fail 2.0809545
10 0.7428 1/π2 0.0483 0.5195 0.4137281 6.4042950
20 0.6485 1/π2 0.0087 0.0630 0.0412247 7.5655481

1/h M κ1 κ2 κ3 C(h) ‖v0‖H1
0

5 2.7265 0 0 58.97 h/(2π) 2.0748883
10 2.7455 0 0 58.91 h/(2π) 0.5480179
20 2.7467 0 0 58.69 h/(2π) 0.1345409

In this case, it can be taken as Cp = 1/(
√

2π).

Table 5 shows computational results for the domain Ωco = (0, 1)2. In the
table, ’smallest αE’ and ’largest αU ’ indicate the smallest and the largest
bounds α satisfying the verification conditions (4.8) and (4.9), respectively.
We take the approximate finite element subspace Vh as Vh = Sh.

Next, in the case of the example 4, we consider a modified candidate set
of the form

Wα ≡
{

w ∈ H1
0 (Ω) ∩ L∞(Ω) : max{‖w‖H1

0
, ‖w‖L∞} ≤ α

}
. (5.7)

Namely, we enclose the solution of (5.4) in the Banach space X ≡ H1
0 (Ω) ∩

L∞(Ω) with norm ‖w‖X ≡ max{‖w‖H1
0
, ‖w‖L∞}. Further we need the inverse

norm estimates in the following L∞ sense:

‖v‖L∞ ≤M∞‖Lv‖L2 , ∀v ∈ H2(Ω) ∩H1
0 (Ω),

where M∞ can be computed by using M1 in the section 2 and the con-
structive approach to the imbedding theory described in [11], [12] (see the
previous subsection).
Thus the condition for existence is written as

max{M1,M∞} sup
w∈Wα

‖g(w)‖L2 ≤ α.

Then, the linearized operator L and the right-hand side g(w) of (4.4) are as
follows:

Lw ≡ −∆w + λ(ũh · ∇)w + λ(w · ∇)ũh,

gr(w) ≡ −λ [((w + v0) · ∇)(w + v0) + (ũh · ∇)v0 + (v0 · ∇)ũh] .
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The verification conditions using α are similarly represented as in the previ-
ous example. That is, corresponding to the condition (5.6), it also leads to
the inequality in α of the quadratic form such that

max{M1,M∞}(B2α
2 + B1α + B0) ≤ α, (5.8)

where Bi, 0 ≤ i ≤ 2, are constants determined similarly as Ei in the previous
example. Particularly, for the efficient computations, we used the L∞ residual
method for v0 ([9]). And the uniqueness condition is also similarly given as
before. The verification results for the parameter λ = 10 are shown in Table
6 with Vh = Sh.

Table 6: Verification results for Example 4 for λ = 10
1/h M1 M∞ B2 B1 B0 smallest αE largest αU

5 0.2907 0.8461 10
√

2 0.5616 0.0519 Fail 0.0219261

10 0.2489 0.7522 10
√

2 0.1355 0.0110 0.0105836 0.0422075

20 0.2358 0.7226 10
√

2 0.0304 0.0024 0.0018544 0.0478497

1/h M κ1 κ2 κ3 C(h) ‖v0‖H1
0

‖v0‖L∞

5 1.0052 3.5430 12.86 κ2 h/(2π) 0.0119672 0.0277488
10 1.0054 3.5428 13.11 κ2 h/(2π) 0.0028730 0.0067093
20 1.0055 3.5389 13.20 κ2 h/(2π) 0.0006714 0.0014803

In this case, it can be taken as Cp = 1/(
√

2π).

Remark 4 The computational efficiency of the above results, in the example
3, was almost similar to that the existing methods up to now, e.g., comparing
with [17]. But, the determination of the range for existence and/or unique-
ness as shown in the tables might be impossible for those methods up to now.
Particularly, we can find rather wide range which contains no solutions. For
example, from the tables 5 and 6, we can conclude that there are no solutions
at all for α in [0.0412247, 7.5655481] and in [0.0018544, 0.0478497], respec-
tively. This property should be useful and powerful for the purpose to prove
the nonexistence theorem in various kinds of problems.

Remark 5 For the present cases, we separately verified the existence and
uniqueness by the criteria (4.6) and (4.7), respectively. We can also use
another method to prove them simultaneously. Namely, the condition

F (0) + F ′(W )W
◦⊂ W
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is satisfied for the candidate set W , then it implies that a locally unique
solution is enclosed in W ([18]).

Remark 6 All computations in Tables 1-6 are carried out on the Dell Preci-
sion 650 Workstation Xeon 3.20GHz Dual-CPU by using INTLAB 5, a tool-
box in MATLAB 7.1 developed by Rump [14] for self-validating algorithms.
Therefore, all numerical values in these tables are verified data in the sense
of strictly rounding error control.
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6 Conclusion

We have proposed a new method and shown the actual effectiveness to the
numerical verification of solutions of nonlinear elliptic boundary value prob-
lems with second order.

Though we have not yet applied to sufficiently many realistic examples,
the results obtained should be sufficient to show the new algorithm actually
seems to be superior to existing methods when concerning equations includ-
ing a first-order derivative. On the other hand, our current method needs
to estimate rigorously an upper bound of the largest eigenvalue for the com-
plicated, usually very large, symmetric matrix LTG−TDG−1L. This should
sometimes lead to very high computational costs compared with the previous
methods, e.g.,[6]. Therefore, we should be careful in our choice of methods
according to the properties of concerned problems. As the future work, it
should be important to make many numerical experiments comparing our
new method with other verification methods, including Plum’s one etc., and
to establish some criteria concerning the appropriate choice of the verification
methods.
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