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Abstract. In the numerical verification method of solutions for nonlinear fourth order
elliptic equations, it is important to find a constant in the constructive a priori and a
posteriori error estimates for the finite element approximation of bi-harmonic problems.
We show these procedures by verified computational techniques using the Hermite spline
functions for two dimensional rectangular domain. Several numerical examples which
confirm the actual effectiveness of the method are presented.
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1 Introduction

In this paper, we consider the guaranteed error bounds of the finite element approxima-
tions for the following equation:

∆2u = f in Ω,
u = ∂nu = 0 on ∂Ω,

(1.1)

where f ∈ L2(Ω) with a rectangular domain Ω in R2, and ∂nu denotes the outer normal
derivative of u.

1.1 Notations

In the below, setting Ω := (0, 1)2 for simplicity, we denote the L2 inner product on Ω by
(·, ·)L2 and the norm by ‖ · ‖L2 . We also denote the usual k-th order L2 Sobolev space on
Ω by Hk(Ω) for any positive integer k as well as the space H2

0 (Ω) by

H2
0 (Ω) :=

{
v ∈ H2(Ω) : v = ∂nv = 0 on ∂Ω

}
.

Let Sh ⊂ H2
0 (Ω), n ≡ dimSh, be a finite element space, under some rectangular mesh,

which is spanned by two dimensional Hermite spline functions {φi}1≤i≤n with homoge-
neous boundary conditions in H2

0 sense [4]. Moreover, we define the space S∗h, n∗ ≡ dimS∗h,
which is spanned by the basis {φ∗i }1≤i≤n∗ , as the finite element subspace of H2(Ω), not
of H2

0 (Ω), satisfying Sh ⊂ S∗h but Sh 6= S∗h(n < n∗) . Namely, the set of base functions
{φ∗i }1≤i≤n∗ consists of the elements in {φi}1≤i≤n and the Hermite spline functions corre-
sponding to the boundary nodes(cf. [5]).

Next, we define the H2
0 -projection Ph : H2

0 (Ω) → Sh of v ∈ H2
0 (Ω) by

(∆v −∆Phv, ∆φh)L2 = 0, ∀φh ∈ Sh.

Moreover, we also define the L2-projection P0 : L2(Ω) → S∗h of v ∈ L2(Ω) by

(v − P0v, φ∗h)L2 = 0, ∀φ∗h ∈ S∗h.

Let Sx
h and Sy

h denote the set of one dimensional Hermite spline functions on (0, 1) with
homogeneous H2

0 boundary conditions in x− and y− directions, respectively. Then, Sh

is represented as the tensor product Sx
h ⊗ Sy

h. Similarly, we have S∗h = Sx∗
h ⊗ Sy∗

h , where

Sx∗
h , Sy∗

h are spaces of one dimensional spline functions without boundary functions. In
what follows, a parameter h stands for the maximum mesh size of the partition of the
interval (0, 1).

In the x-direction, for w ∈ H2
0 (0, 1) and w ∈ L2(0, 1), we also define the projections

P x
2 : H2

0 (0, 1) → Sx
h and P x

0 : L2(0, 1) → Sx∗
h by

(D2
xw −D2

xP
x
2 w,D2

xϕh)L2 = 0, ∀ϕh ∈ Sx
h ,

and

(w − P x
0 w,ϕ∗h)L2 = 0, ∀ϕ∗h ∈ Sx∗

h ,

respectively. For P y
2 and P y

0 , analogously defined in the y-direction.

140



1.2 Motivation

Let uh ∈ Sh be an approximate solution of (1.1) satisfying

(∆uh, ∆φh)L2 = (f, φh)L2 ∀φh ∈ Sh.

Then, note that we have uh = Phu by the definition and that the solution u of (1.1)
belongs to H2

0 (Ω) ∩ H4(Ω)([1]). Therefore, in what follows, we will discuss on the error
estimates for the projection operator Ph.
We now assume the following a priori error estimates.

Assumption 1 For an arbitrary v ∈ H2
0 (Ω) ∩ H4(Ω), there exists a constant C0 such

that

‖∆v −∆Phv‖L2 ≤ C0h
2‖∆2v‖L2 .

Our main purpose of this paper is to find an a priori constant C0 in the assumption 1
by using guaranteed numerical computations on computer. And as a bi-product of the
arguments, we also show a method to get an a posteriori error bound for the approximate
solution of the equation (1.1). In the numerical verification method of solutions for two
dimensional Navier-Stokes problems(e.g., [2]), we need to enclose a solution of bi-harmonic
equations with guaranteed error bounds. In such a situation, the above constant and
a posteriori error estimates for the finite element approximation play an essential and
important role. The basic techniques used in the below are extension of the method in
[5] or [3] to the bi-harmonic problem.

1.3 Preliminary results

We first introduce the following known results.

Lemma 1 [4] For an arbitrary ψ ∈ H2
0 (Ω) ∩H4(Ω), it follows that

‖D2
xψ −D2

xP
x
2 ψ‖L2 ≤ Ch2‖D4

xψ‖L2 , (1.2)

where the constant C can be taken as C = 1/π2. Moreover, the estimate (1.2) is equivalent
to the following inequality:

‖ψ − P x
2 ψ‖L2 ≤ Ch2‖D2

xψ −D2
xP

x
2 ψ‖L2 .

We now show the following inverse inequality for later use.

Lemma 2 For ψh ∈ Sh, it follows that

‖D2
xψh‖L2 ≤ κ

h2
‖ψh‖L2 ,

where κ = 20
√

21 < 91.6516.

141



Proof : Note that it is sufficient to prove the concerning inequality only for one
dimensional polynomial of degree 3 on the interval [0, h]. In [4], base functions for x-
direction on [0, h] are given by

ϕ1(x) = (x− h)2(2x + h)/h3, ϕ2(x) = x2(3h− 2x)/h3,
ϕ3(x) = x(x− h)2/h2, ϕ4(x) = x2(x− h)/h2,

for x ∈ [0, h]. Hence, setting ϕh := a1ϕ1(x)+a2ϕ2(x)+a3ϕ3(x)+a4ϕ4(x) and using some
guaranteed computations of eigenvalue bounds of a matrix, we obtain

‖D2
xϕh‖2

L2(0,h)

‖ϕh‖2
L2(0,h)

=
840

h4


~aT




6 −6 3 3
−6 6 −3 −3

3 −3 2 1
3 −3 1 2


~a


 ·


~aT




156 54 22 −13
54 156 13 −22
22 13 4 −3

−13 −22 −3 4


~a




−1

≤ 8400

h4
,

where ~a = (a1, a2, a3h, a4h)T .
Here, in order to get the above bound, we used a direct calculation of the matrix eigen-
value. That is, denoting the first and the second matrices in the above by A and B,
respectively, let B = DT D a Cholesky decomposition of B. Then, it is readily seen that
the maximum eigenvalue of the symmetric matrix D−T AD−1 presents a desired bound.
By using a computer algebra system, we confirmed that it is equal to 10. Thus, we can
take κ as κ =

√
8400 = 20

√
21.

2 Main Results

In this section, we show the constructive a priori and a posteriori error estimations for ap-
proximate solutions of the equation (1.1), which are equivalent to the same error estimates
for H2

0 -projection of the exact solution.
Let define

vh := Phv ≡
n∑

i=1

viφi ∈ Sh and ∆vh := P0∆vh ≡
n∗∑
i=1

aiφ
∗
i ∈ S∗h,

for an arbitrary v ∈ H2
0 (Ω) ∩H4(Ω).

Then, ∆vh satisfies

(∆vh, φ
∗
h)L2 = (∆vh, φ

∗
h)L2 ,

= −(∇vh,∇φ∗h)L2 , ∀φ∗h ∈ S∗h. (2.1)
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And, for g ≡ ∆2v ∈ L2(Ω), we set

gh ≡
n∑

i=1

giφi ∈ Sh,

so that

(gh, φh)L2 = (g, φh)L2 , ∀φh ∈ Sh. (2.2)

Moreover, we denote some matrices and vectors as

A∗ = (A∗
ij) = (∆φ∗j , ∆φ∗i )L2 ∈ Rn∗×n∗ , A = (Aij) = (∆φj, ∆φi)L2 ∈ Rn×n,

L∗ = (L∗ij) = (φ∗j , φ
∗
i )L2 ∈ Rn∗×n∗ , L = (Lij) = (φj, φi)L2 ∈ Rn×n,

M = (Mij) = (∇φj,∇φ∗i )L2 ∈ Rn∗×n, N = (Nij) = (∇φ∗j ,∇φi)L2 ∈ Rn×n∗ .

and
~a = (a1, · · · an∗)

T ∈ Rn∗ , ~v = (v1, · · · vn)T , ~g = (g1, · · · gn)T ∈ Rn.

Notice that ‖g‖2
L2 = ‖gh‖2

L2 +‖g−gh‖2
L2 . And, when we define the matrix Q ∈ Rn×n such

that L = QQT , it follows that‖QT~g‖E = ‖gh‖L2 , where ‖ · ‖E means the Euclidean norm
in Rn. Under the above notations, the functions vh and ∆vh are determined by solving
the following matrix equations:

A~v = L~g,

and

L∗~a = −M~v,

respectively. Then, we have the following estimates.

Lemma 3 It follows that

‖∆vh −∆vh‖L2 ≤ X‖gh‖L2 ,

‖gh −∆∆vh‖L2 ≤ Y‖gh‖L2 ,

where X ≡ ‖Q−1XQ−T‖1/2
E , Y ≡ ‖Q−1Y Q−T‖1/2

E . Here, setting Z ≡ L−1
∗ MA−1L,

X ≡ LA−1L− ZT L∗Z,

Y ≡ L−NZ − ZT NT + ZT A∗Z.

Proof : First, for the estimate ‖∆vh −∆vh‖L2 , we have

‖∆vh −∆vh‖2
L2 = ‖∆vh‖2

L2 − ‖∆vh‖2
L2

= ~vT A~v − ~aT L∗~a

= ~vT A~v − ~vT MT L−1
∗ M~v

= ~gT (LA−1L− LA−1MT L−1
∗ MA−1L)~g.
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Next, for the estimate ‖gh −∆∆vh‖L2 , it follows that

‖gh −∆∆vh‖2
L2

= (gh, gh)L2 − (gh, ∆∆vh)L2 − (∆∆vh, gh)L2 + (∆∆vh, ∆∆vh)L2

= (gh, gh)L2 + (∇gh,∇∆vh)L2 + (∇∆vh,∇gh)L2 + (∆∆vh, ∆∆vh)L2

= ~gT L~g + ~gT N~a + ~aT NT~g + ~aT A∗~a

= ~gT L~g − ~gT NL−1
∗ M~v − ~vT MT L−1

∗ NT~g + ~aT MT L−1
∗ A∗L−1

∗ M~v

= ~gT (L−NL−1
∗ MA−1L− LA−1MT L−1

∗ NT + LA−1MT L−1
∗ A∗L−1

∗ MA−1L)~g.

Thus by the above definitions of matrices X, Y and Z, we have

‖∆vh −∆vh‖2
L2 = ~gT X~g,

‖gh −∆∆vh‖2
L2 = ~gT Y ~g,

which prove the lemma taking account that ‖QT~g‖E = ‖gh‖L2 .

Lemma 4 For an arbitrary ψ ∈ H2
0 (Ω), it follows that

‖∆ψ −∆P x
0 P y

0 ψ‖L2 ≤ K‖∆ψ‖L2 ,

where K =
(
2 + 2 (Cκ + 1)2)1/2

, the constants C and κ are the same as in Lemma 1 and
2, respectively.

Proof : From the lemma 1 and 2, it follows that

‖D2
x(ψ − P x

2 ψ)−D2
x(P

x
0 ψ − P x

0 P x
2 ψ)‖L2

≤ ‖D2
x(ψ − P x

2 ψ)‖L2 + ‖D2
x( P x

0 (ψ − P x
0 P x

2 ψ) )‖L2

≤ ‖D2
xψ‖L2 +

κ

h2
‖P x

0 (ψ − P x
2 ψ)‖L2

≤ ‖D2
xψ‖L2 +

κ

h2
‖ψ − P x

2 ψ‖L2

≤ ‖D2
xψ‖L2 + Ch2 κ

h2
‖D2

xψ‖L2

≤ (Cκ + 1) ‖D2
xψ‖L2 .

Thus, we have

‖D2
x(ψ − P x

0 P y
0 ψ)‖2

L2 = ‖D2
x(ψ − P y

0 ψ) + D2
x(P

y
0 ψ − P y

0 P x
0 ψ)‖2

L2

= ‖D2
x(ψ − P y

0 ψ)‖2
L2 + ‖D2

x( P y
0 (ψ − P x

0 ψ) )‖2
L2

≤ ‖D2
xψ‖2

L2 + ‖D2
x(ψ − P x

0 ψ)‖2
L2

≤ ‖D2
xψ‖2

L2 + ‖D2
x(ψ − P x

2 ψ)−D2
x(P

x
0 ψ − P x

0 P x
2 ψ)‖2

L2

≤ (
1 + (Cκ + 1)2) ‖D2

xψ‖2
L2 ,

where we have used the result just above to obtain the last right-hand side. Similarly, it
follows that

‖D2
yψ −D2

yP
x
0 P y

0 ψ‖L2 ≤ (
1 + (Cκ + 1)2)1/2 ‖D2

yψ‖L2 .

144



Hence, we have the following estimation:

‖∆ψ −∆P x
0 P y

0 ψ‖L2 ≤ ‖D2
x(ψ − P x

0 P y
0 ψ)‖L2 + ‖D2

y(ψ − P x
0 P y

0 ψ)‖L2

≤
(
1 +

(
C2κ + 1

)2
)1/2

(‖D2
xψ‖L2 + ‖D2

yψ‖L2)

≤ (
2 + 2 (Cκ + 1)2)1/2 (‖D2

xψ‖2
L2 + ‖D2

yψ‖2
L2

)1/2

≤ (
2 + 2 (Cκ + 1)2)1/2 ‖∆ψ‖L2 ,

where, in order to derive the last inequality, we have used the well known equality
‖∆ψ‖2

L2 = ||D2
xψ||2L2 + ||D2

yψ||2L2 + 2||Dxyψ||2L2 for any ψ ∈ H2
0 (Ω) on an arbitrary do-

main Ω. Therefore, we obtain the constant K as in the lemma.

Lemma 5 For an arbitrary ψ ∈ H2
0 (Ω), it follows that

‖ψ − P x
0 P y

0 ψ‖L2 ≤ Ch2‖∆ψ‖L2 ,

where the constant C is the same as in Lemma 1.

Proof : From the lemma 1, it follows that

‖ψ − P x
0 P y

0 ψ‖2
L2 = ‖ψ − P x

0 ψ + P x
0 ψ − P x

0 P y
0 ψ‖2

L2

= ‖ψ − P x
0 ψ‖2

L2 + ‖P x
0 (ψ − P y

0 ψ)‖2
L2

≤ ‖ψ − P x
0 ψ‖2

L2 + ‖ψ − P y
0 ψ‖2

L2

≤ ‖ψ − P x
2 ψ‖2

L2 + ‖ψ − P y
2 ψ‖2

L2

≤ C2h4‖D2
xψ‖2

L2 + C2h4‖D2
yψ‖2

L2

≤ C2h4‖∆ψ‖2
L2 ,

which completes the proof.

Now, we show the following two main results of this paper.

Theorem 1 (constructive a priori error estimates) The constant C0 in Assumption 1 can
be taken as

C0 = C ·
[(

KX/(Ch2) + Y
)2

+ 1
]1/2

,

where the constants X, Y, C and K are defined in the previous lemmas 1, 3 and 4.

Theorem 2 (a posteriori error estimates) For any v ∈ H2
0 (Ω)∩H4(Ω), let vh := Phv ∈ Sh

and ∆vh := P0∆vh ∈ S∗h. Then, it follows that

‖∆v −∆vh‖L2 ≤ K‖∆vh −∆vh‖L2 + Ch2‖∆2v −∆∆vh‖L2 ,

where C and K are defined in the lemmas 1 and 4.
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Proof : (proof of Theorem 1 and 2)
First, for an arbitrary ψ ∈ H2

0 (Ω) and ψ̃0 ∈ Sh, we have

(∆v −∆vh, ∆ψ)L2

= (∆v −∆vh, ∆ψ −∆ψ̃0)L2

= (∆v −∆vh, ∆ψ −∆ψ̃0)L2 + (∆vh, ∆ψ −∆ψ̃0)L2 − (∆∆vh, ψ − ψ̃0)L2

= (∆vh −∆vh, ∆ψ −∆ψ̃0)L2 + (∆2v −∆∆vh, ψ − ψ̃0)L2

≤ ‖∆vh −∆vh‖L2‖∆ψ −∆ψ̃0‖L2 + ‖∆2v −∆∆vh‖L2‖ψ − ψ̃0‖L2 .

Thus, setting ψ := v − vh ∈ H2
0 (Ω) and ψ̃0 ≡ P x

0 P y
0 ψ ∈ Sh, from the lemmas 4 and 5, we

obtain the desired estimates in Theorem 2.
Next, using Theorem 2, Lemma 3 and the property of the L2-projection, it follows that

‖∆v −∆vh‖L2 ≤ K‖∆vh −∆vh‖L2 + Ch2‖g −∆∆vh‖L2

≤ K‖∆vh −∆vh‖L2 + Ch2
(‖gh −∆∆vh‖L2 + ‖g − gh‖L2

)

≤ (
KX + Ch2Y

) ‖gh‖L2 + Ch2‖g − gh‖L2

≤
[(

KX + Ch2Y
)2

+ C2h4
]1/2

‖g‖L2

=
[(

KX/h2 + CY
)2

+ C2
]1/2

h2‖g‖L2 ,

which immediately completes the proof of Theorem 1.

3 Numerical examples

In this section, we present some numerical examples of a priori and a posteriori error
estimates for the approximation of the bi-harmonic problem (1.1). Since the finite element
solution uh ∈ Sh of (1.1) is defined by

(∆uh, ∆φh)L2 = (f, φh)L2 ∀φh ∈ Sh,

we have uh = Phu, and thus the above arguments can be applied to the error estimates
for this approximate solution uh. That is, using the procedure in the previous section to
define ∆uh ≡ P0∆uh ∈ S∗h, we obtain the a priori and a posteriori error estimates of the
form

‖∆u−∆uh‖L2 ≤ C0h
2‖f‖L2 , (3.1)

and

‖∆u−∆uh‖L2 ≤ K‖∆uh −∆uh‖L2 + Ch2‖f −∆∆uh‖L2 , (3.2)

respectively. Here, constants C0, K and C are same as in theorems in Section 2.
We first show several computational results for the constructive a priori constants in
Theorem 1 by Table 1.
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Table 1: Numerical results for the a priori constant

1/h C0 X Y C0h
2 C0/C

10 0.7225 3.6718e-4 1.7641 7.2256e-3 7.1314
20 0.7377 9.3350e-5 1.8257 1.8443e-3 7.2812
30 0.7611 4.3440e-5 1.8057 8.4573e-4 7.5123
40 0.7811 2.5416e-5 1.7780 4.8819e-4 7.7093
50 0.7967 1.6764e-5 1.7536 3.1868e-4 7.8633
60 0.8091 1.1918e-5 1.7341 2.2477e-4 7.9862
70 0.8193 8.9195e-6 1.7195 1.6720e-4 8.0864
80 0.8278 6.9315e-6 1.7095 1.2934e-4 8.1703
90 0.8356 5.5486e-6 1.7036 1.0317e-4 8.2478
100 0.8418 4.5390e-6 1.7006 8.4185e-5 8.3087

10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1/h

C
0

C
0
*h

0.06

C
0
*h

0.08

C
0
*h

0.10

The constant C in the table is taken as C = 1/π2.

Next, we present some examples of the a posteriori error for the following bi-harmonic
problem.

∆2u = f in Ω,
u = ∂nu = 0 on ∂Ω,

(3.3)

where Ω = (0, 1)2 and

f ≡ f(x, y) = 8
(
3x2(1− x)2 + xy(x− 1)(y − 1)(2x− 1)(2y − 1) + 3y2(1− y)2

)
.

The exact solution of (3.3) is given by u ≡ u(x, y) = x2y2(1− x)2(1− y)2.
Table 2 shows numerical results for the a priori and a posteriori error estimates in

(3.1) and (3.2), respectively. Note that ‖f‖L2 =
√

992/175 < 2.3809.

Table 2: Numerical results for the a priori and a posteriori estimates in (3.1) and (3.2)

1/h (3.1) (3.2) ‖∆u−∆uh‖L2 ‖∆uh −∆uh‖L2 ‖f −∆∆uh‖L2

10 1.7201e-2 7.8301e-3 5.0527e-4 4.4700e-4 1.2798
20 4.3909e-3 1.9680e-3 1.2595e-4 1.1897e-4 0.9047
30 2.0134e-3 8.7011e-4 5.5883e-5 5.3843e-5 0.7385
40 1.1623e-3 4.8659e-4 3.1376e-5 3.0521e-5 0.6394
50 7.5873e-4 3.0962e-4 2.0034e-5 1.9598e-5 0.5716
60 5.3510e-4 2.1363e-4 1.3863e-5 1.3611e-5 0.5215
70 3.9809e-4 1.5609e-4 1.0154e-5 9.9966e-6 0.4826
80 3.0795e-4 1.1870e-4 7.7390e-6 7.6331e-6 0.4511
90 2.4561e-4 9.3310e-5 6.0946e-6 6.0203e-6 0.4250
100 2.0042e-4 7.5133e-5 4.9152e-6 4.8611e-6 0.4029
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(3.1)/h2 (3.2)/h2 ‖∆u−∆uh‖L2/h2

10 20 30 40 50 60 70 80 90 100
1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

1/h

10 20 30 40 50 60 70 80 90 100
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1/h

10 20 30 40 50 60 70 80 90 100
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

1/h

All the computations were carried out by MATLAB on the Dell Precision 650 Work-
station (Intel Xeon Dual CPU 3.20GHz).
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