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Abstract

In the numerical verification method of solutions for nonlinear fourth
order elliptic equations in nonconvex polygonal domains, it is important to
find a constant in the constructive a priori error estimate for the finite ele-
ment approximation of bi-harmonic problems. We show these procedures
by verified computational techniques using the Hermite spline functions
for the two dimensional L-shaped domain. Several numerical examples
which confirm the actual effectiveness of the method are presented.
Keywords : bi-harmonic problems, nonconvex polygonal domains, con-
structive a priori error estimate

1 Introduction

In this paper, we consider the guaranteed error bounds of the finite element
approximations for the following equation:

∆2u = f in Ω,
u = ∂nu = 0 on ∂Ω,

(1.1)

where f ∈ L2(Ω) with a nonconvex polygonal domain Ω in R2, and ∂nu denotes
the outer normal derivative of u. In particular, we consider the case of L-shaped
domains.

1.1 Notations

In the below, setting Ω := (−1, 1)2\[−1, 0]2 for simplicity, we denote the L2

inner product on Ω by (·, ·)L2 and the norm by ‖ · ‖L2 . We also denote the usual
k-th order L2 Sobolev space on Ω by Hk(Ω) for any positive integer k as well
as the spaces H2

0 (Ω) and X(Ω) are defined by

H2
0 (Ω) :=

{
v ∈ H2(Ω) : v = ∂nv = 0 on ∂Ω

}
,

X(Ω) :=
{
v ∈ H2

0 (Ω) : ∆2v ∈ L2(Ω)
}

,

1



respectively.
Let Ω∗ be a rectangular domain which includes Ω. We take Ωout as a residual

domain such that Ω∗ = Ω ∪ Ωout (see Figure 1 and [6]).
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Figure 1: Convex extension of the domain

Then, we extend an arbitrary v ∈ H2
0 (Ω) to the function on Ω∗ with v =

∂nv = 0 in Ωout, which belongs to H2
0 (Ω∗) and is also denoted by v.

Let Sh ⊂ H2
0 (Ω) be a finite element subspace, which is spanned by two

dimensional Hermite spline functions {φi}1≤i≤n with homogeneous boundary
conditions in H2

0 sense(e.g., [5]). Moreover, we define the space S∗h which is
spanned by the basis {φ∗i }1≤i≤n∗ , as the finite element subspace of H2

0 (Ω∗)
satisfying Sh ⊂ S∗h. Namely, the set of base functions {φ∗i }1≤i≤n∗ consists of
the elements in {φi}1≤i≤n and the Hermite spline functions corresponding to
the residual domains(cf. [6]). Note that the finite element subspaces Sh and S∗h
are dependent on the parameter h.

Next, we define the H2
0 -projection Ph : H2

0 (Ω) → Sh of v ∈ H2
0 (Ω) by

(∆v −∆Phv,∆φh)L2 = 0, ∀φh ∈ Sh.

The H2
0 -projection P ∗h : H2

0 (Ω∗) → S∗h is analogously defined(see Figure 2).
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Figure 2: An image of Phv and P ∗hv for v ∈ H2
0 (Ω)

Notice that for all notations, we sometimes denote the notation with Ω when
it depends on Ω.
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1.2 Motivation

Let uh ∈ Sh be an approximate solution of (1.1) satisfying

(∆uh,∆φh)L2 = (f, φh)L2 ∀φh ∈ Sh.

Then, note that we have uh = Phu by the definition. Also, on the regularity
of solutions, note that the solution u of (1.1) belongs to H2

0 (Ω) ∩ H5/2+α(Ω),
where 0 ≤ α ≤ 3/2 which depends on the shape of the domains(e.g., [1][2]).
Particularly, in case that Ω = (−1, 1)2\[−1, 0]2, we have α = 0. Therefore, in
what follows, we consider the actual order of magnitude for the projection error,
which is our main interest in the present paper.
We now assume the following a priori error estimates for the projection operator
Ph.

Assumption 1 For an arbitrary v ∈ X(Ω), there exists a constant C(h) de-
pendent on h such that

‖∆v −∆Phv‖L2 ≤ C(h)‖∆2v‖L2 .

Our main purpose of this paper is to find an a priori constant C(h) in the as-
sumption 1 by using guaranteed numerical computations on computer. In the
numerical verification method of solutions for two dimensional Navier-Stokes
problems(e.g., [3]), we need to enclose a solution of bi-harmonic equations with
guaranteed error bounds. In such a situation, the above constant and a poste-
riori error estimates for the finite element approximation play an essential and
important role. The basic techniques used in the below are extension of the
method in [6] to the bi-harmonic problem.

1.3 Preliminary results

We first introduce the following known results.

Theorem 1 For an arbitrary v ∈ X(Ω), Assumption 1 is equivalent to the
following inequality:

‖v − Phv‖L2 ≤ C(h)‖∆v −∆Phv‖L2 . (1.2)

Proof : First, we assume that Assumption 1 holds. Let φ ∈ X(Ω) be a
solution of the following bi-harmonic equation:

∆2φ = v − Phv in Ω,
φ = ∂nφ = 0 on ∂Ω.

Then, from (∆v −∆Phv,∆Phφ)L2 = 0, it follows that

‖v − Phv‖2L2 = (v − Phv, v − Phv)L2 = (∆φ, ∆v −∆Phv)L2

= (∆φ−∆Phφ, ∆v −∆Phv)L2

≤ ‖∆φ−∆Phφ‖L2‖∆v −∆Phv‖L2 .

Thus, using Assumption 1, we can obtain

‖v − Phv‖L2 ≤ C(h)‖∆v −∆Phv‖L2 .
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Next, we assume that the inequality (1.2) holds. Then, from the definition of
H2

0 -projection, we have

‖∆v −∆Phv‖2L2 = (∆v −∆Phv, ∆v −∆Phv)L2

= (∆v, ∆v −∆Phv)L2

= (∆2v, v − Phv)L2

≤ ‖∆2v‖L2‖v − Phv‖L2 .

Hence, we can obtain ‖∆v−∆Phv‖L2 ≤ C(h)‖∆2v‖L2 . Therefore, this proof is
completed.

Theorem 2 [2][4] For an arbitrary v ∈ X(Ω∗), it follows that v ∈ H2
0 (Ω∗) ∩

H4(Ω∗). Then, there exists a constant C0 such that

‖∆v −∆P ∗hv‖L2(Ω∗) ≤ C0h
2‖∆2v‖L2(Ω∗),

where C0 is numerically determined.

For the constant C0 in Theorem 2, the following numerical results are ob-
tained(refer [4]).

Table 1: Numerical results for the a priori constant

1/h C0 C0h
2

10 0.7225 7.2256e-3
20 0.7377 1.8443e-3
30 0.7611 8.4573e-4
40 0.7811 4.8819e-4
50 0.7967 3.1868e-4
60 0.8091 2.2477e-4
70 0.8193 1.6720e-4
80 0.8278 1.2934e-4
90 0.8356 1.0317e-4
100 0.8418 8.4185e-5

10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1/h

C
0

C
0
*h

0.06

C
0
*h

0.08

C
0
*h

0.10

Remark : Theorem 2 is equivalent to the following inequality:

‖v − P ∗hv‖L2(Ω∗) ≤ C0h
2‖∆v −∆P ∗hv‖L2(Ω∗).

This remark is proven by the process similar to Theorem 1.

2 A computational procedure for C(h)

For the numerical verification method, it is important to obtain the constructive
a priori error estimate between a function and its projection. However, it is
generally known that, in the case of nonconvex polygonal domains, the lower
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regularity of the solution leads the lower accuracy in this estimate. Hence,
using techniques in [6], we show a computational procedure of the constructive
a priori error estimation for the present case. Namely, our aim is to show how
to evaluate the a priori constant C(h) in the current situation.

We first define the constant K as follows:

K ≡ sup
v∈H2

0 (Ω)

‖P ∗hv − Phv‖L2(Ω)

‖P ∗hv − Phv‖L2(Ωout)
. (2.1)

Then, we have the following main result of this paper.

Theorem 3 For the constant C(h) in Assumption 1, it holds that

C(h) ≤ C0h
2
√

1 + K2,

where the constant C0 is the same as in Theorem 2.

Proof : For an arbitrary v ∈ X(Ω), it follows that

‖v − P ∗hv‖2L2(Ω∗) = ‖v − P ∗hv‖2L2(Ω) + ‖P ∗hv‖2L2(Ωout)
.

Thus, for 0 ≤ θ ≤ π/2, we have the following equality:

‖v − P ∗hv‖L2(Ω) = ‖v − P ∗hv‖L2(Ω∗) cos θ,

‖P ∗hv‖L2(Ωout) = ‖v − P ∗hv‖L2(Ω∗) sin θ.

Moreover, using Remark of Theorem 2 and the above, we have

‖v − P ∗hv‖L2(Ω) ≤ C0h
2‖∆v −∆P ∗hv‖L2(Ω∗) cos θ,

‖P ∗hv‖L2(Ωout) ≤ C0h
2‖∆v −∆P ∗hv‖L2(Ω∗) sin θ.

Hence, using K in (2.1) and the fact that Ω ⊆ Ω∗, we obtain

‖v − Phv‖L2(Ω) = ‖v − P ∗hv + P ∗hv − Phv‖L2(Ω)

≤ ‖v − P ∗hv‖L2(Ω) + ‖P ∗hv − Phv‖L2(Ω)

≤ C0h
2 (cos θ + K sin θ) ‖∆v −∆P ∗hv‖L2(Ω∗)

≤ C0h
2
√

1 + K2‖∆v −∆P ∗hv‖L2(Ω∗).

Since

‖∆v −∆P ∗hv‖2L2(Ω∗) = ‖∆(v − Phv)−∆P ∗h (v − Phv)‖2L2(Ω∗)

= ‖∆(v − Phv)‖2L2(Ω∗) − ‖∆P ∗h (v − Phv)‖2L2(Ω∗)

= ‖∆v −∆Phv‖2L2(Ω) − ‖∆P ∗h (v − Phv)‖2L2(Ω∗),

it follows that ‖v − Phv‖L2(Ω) ≤ C0h
2
√

1 + K2‖∆v − ∆Phv‖L2(Ω). Therefore,
this proof is completed from Theorem 1 and the definition of K.
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3 The eigenvalue problems for the constant K

In the section, we introduce a method on the computation of the constant K
which is defined in the previous section. We now introduce some notations
below.

First, we define three n∗×n∗ matrices H = (Hij), L = (Lij) and D = (Dij)
as follows.

Hij = (∆φ∗j , ∆φ∗i )L2(Ω∗), Lij = (φ∗j , φ
∗
i )L2(Ω), Dij = (φ∗j , φ

∗
i )L2(Ωout),

for 1 ≤ i, j ≤ n∗. And, we take B = {J1, · · · , Jb} as a set of the numbers
corresponding to nodes on the common boundary of Ω and Ωout(i.e. ∂Ω∩∂Ωout).

Then, for an arbitrary v ∈ H2
0 (Ω), letting vh ≡ Phv and v∗h ≡ P ∗hv, it follows

that

(∆v∗h −∆vh, ∆φ∗i )L2(Ω∗) = (∆v −∆vh, ∆φ∗i )L2(Ω) if i ∈ B,
(∆v∗h −∆vh, ∆φ∗i )L2(Ω∗) = 0 otherwise.

Here, we define a vector g =
(
gi

) ∈ Rn∗ by

gi =
{

(∆v −∆vh, ∆φ∗i )L2(Ω) if i ∈ B,
0 otherwise.

Then, the norms ‖v∗h − vh‖L2(Ω) and ‖v∗h − vh‖L2(Ωout) = ‖v∗h‖L2(Ωout) can be
written as

‖v∗h − vh‖2L2(Ω) = gT Xg, ‖v∗h‖2L2(Ωout)
= gT Y g,

where X := H−1LH−1 and Y := H−1DH−1. Moreover, we define b×b matrices
X = (Xij) and Y = (Yij) by Xij = XJiJj and Yij = YJiJj for 1 ≤ i, j ≤ b,
respectively. Then, the constant K in (2.1) is given by solving the following
generalized eigenvalue problem:

Xb = λ2Yb, (3.1)

for b ∈ Rb. Namely, K can be taken as K = max1≤i≤b

√
λ2

i , where λ2
i is the

eigenvalue of (3.1). Note that the dimension of this eigenvalue problem is small.

4 Numerical results

In this section, we show several computational results for the actual value of a
priori constants C(h) in Theorem 3 by Table 2 below.
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Table 2: Numerical results for the a priori constant C(h)

1/h 10 20 30 40 50
K 8.4690 23.0985 41.6299 63.2237 87.4241

C(h) 6.1618e-3 4.2640e-3 3.5217e-3 3.0869e-3 2.7862e-3

1/h 60 70 80 90 100
K 113.9375 142.5256 173.0248 205.3179 239.2797

C(h) 2.5610e-3 2.3830e-3 2.2379e-3 2.1182e-3 2.0143e-3

10 20 30 40 50 60 70 80 90 100

0.29

0.295

0.3

0.305

0.31

0.315

0.32

0.325

1/h

K*h
1.44

K*h
1.45

K*h
1.46

20 30 40 50 60 70 80 90 100
0.016

0.0165

0.017

0.0175

0.018

0.0185

1/h

C(h)*h
-0.48

C(h)*h
-0.47

C(h)*h
-0.45

In [2], the order of magnitude for the a priori constant C(h) is presented as
C(h) = O(h0.5) for L-shaped domains. From Table 2 it is seen that our results
almost coincide with this order.

All computations in tables are carried out on the Dell Precision 650 Work-
station Intel Xeon Dual CPU 3.20GHz by MATLAB.

This work is supported by Kyushu University 21st Century COE Program,
Development of Dynamic Mathematics with High Functionality, of the Ministry
of Education, Culture, Sports, Science and Technology of Japan.

References

[1] Kondratiev V.A., Boundary problems for elliptic equations in domains with
conical or angular points, Tran. Moscow Math. Soc. 16(1967), 227-313.

[2] Mizutani A., On the finite element method for biharmonic dirichlet problem
in polygonal domains; Quasi-optimal rate of convergence, JPN J. Indust.
Appl. Math. 22[1](2005), 45-56.

[3] Nagatou K., Hashimoto K., Nakao M.T., Numerical verification of station-
ary solutions for Navier-Stokes problems, MHF Preprint Series, Kyushu
University, MHF 2005-30.

[4] Nakao M.T., Hashimoto K., Nagatou K., A computational approach to
constructive a priori and a posteriori error estimates for finite element
approximations of bi-harmonic problems, MHF Preprint Series, Kyushu
University, MHF 2005-29.

7



[5] Schultz M.H., Spline Analysis, Prentice-Hall, London, 1973.

[6] Yamamoto N., Nakao M.T.; Numerical verifications of solutions for elliptic
equations in nonconvex polygonal domains, Numer. Math. 65(1993), 503-
521.

8


