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Abstract

In order to verify the solutions of nonlinear boundary value problems
by Nakao’s computer-assisted numerical method, it is required to find a
constant, as sharp as possible, in the a priori error estimates for the finite
element approximation of some simple linear problems. For singularly per-
turbed problems, however, generally it is known that the perturbation term
produces a bad effect on the a priori error estimates, i.e., leads to a large
constant, if we use the usual approximation methods. In this paper, we
propose some verification algorithms for solutions of singularly perturbed
problems with nonlinearity by using the constant obtained in the a priori er-
ror estimates based on the exponential fitting method with Green’s function.
Some numerical examples which confirm us the effectiveness of our method
are presented.

Key word numerical verification, singularly perturbed problem, finite element
method, a priori constant.

1 Introduction

The numerical verification method for solutions of nonlinear differential equations
realizes a mathematically rigorous analysis on computer, which is often effectively
applied to the problem for which usual theoretical approaches no longer work.
However, there have been no practical verification methods which are suitable to
the singularly perturbed problem up to the present. In this paper, we consider
the verification method of solutions for the following singularly perturbed problem
with nonlinearity including parameter ε (1 À ε > 0):

{
Lu ≡ −εu′′ − b(x)u′ + c(x)u = f(u) in (0, 1),

u(0) = u(1) = 0,
(1.1)
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where f : L∞(0, 1) → L∞(0, 1) is a bounded continuous map, and we suppose that
b(x), c(x) ∈ W 1

∞(0, 1), and that there exists a constant γ such that c(x) ≥ γ > 0.

Our arguments below are based on the finite element method on the interval
(0, 1) with mesh : 0 = x0 < x1 < · · · < xn < xn+1 = 1. Let h and hmin denote the
maximum and the minimum width of subintervals, respectively. We denote the
trial and the test spaces by Sh and Vh ⊂ L∞(0, 1)∩H1

0 (0, 1), respectively. And we
define the piecewise constant functions b̄ = b̄(x), c̄ = c̄(x) ∈ L∞(0, 1) by

b̄(x) =
b(xi−1) + b(xi)

2
, c̄(x) =

c(xi−1) + c(xi)

2
, x ∈ (xi−1, xi),

for i = 1, · · · , n.
Here, we try to extend and apply Nakao’s verification method [2] for the ap-

plication to the singularly perturbed problem (1.1). In this method, it plays an
important and essential role to get an a priori error estimation of the finite element
solution of the linear problem, usually based on H1

0 -projection. For the singularly
perturbed problems, however, when the usual finite element schemes are applied, it
is known that the constant in the a priori error estimates increases as the perturba-
tion parameter ε decreases. That is, from the error estimates of the H1

0 -projection
to the solution of −εφ′′ = g (g ∈ L∞(0, 1)), it is known that, if we use piecewise
polynomials then we have

‖φ− PH1
0
φ‖∞ ≤ C(ε)h2‖g‖∞, (1.2)

where C(ε) →∞ if ε → 0. The estimates (1.2) imply that using such an approxi-
mate method would lead the inefficient computational procedure for the verification
for small ε. Therefore, in this paper we paid attention to the exponential fitting
technique, L̄-spline method, studied by M. Stynes and E. O’Riordan [4][6][7][8].
That is, we carefully and numerically estimated various kinds of constants appear-
ing in the error analyses of their methods. And we succeed in estimating an a
priori constant, such as in (1.2), numerically with independent of or less dependent
on the perturbation parameter, and to apply it to the verification for solutions of
the singularly perturbed problem with nonlinearity (1.1).

In Section 2, we show the computational result of the constructive a priori error
estimation of constants to the linear problem. Especially, as for the convection-
diffusion problem of the subsection 2.1, we obtained the error estimation of O(h)
which is independent of ε. In the subsection 2.2, the theoretical analysis yields
some constructive error estimations to the reaction-diffusion problem, which can
be more effectively used for the verification of the nonlinear problem compared
with usual methods, even though it still depends on the perturbation parameter.
In the section 3, an actual verification algorithm is shown, and some verification
results are presented in the section 4.
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2 Constructive a priori error estimates for a lin-

ear singularly perturbed problem using Green’s

function

In this section, we try to compute the constant in the a priori error estimation of fi-
nite element approximations for linear convection and reaction diffusion equations.
We determine two different kinds of constants corresponding to the convection and
the reaction diffusion problems, respectively.

2.1 Convection Diffusion Problem

We first consider the following linear convection diffusion problems.
{

Lφ ≡ −εφ′′ − b(x)φ′ + c(x)φ = g in (0, 1),
φ(0) = φ(1) = 0,

(2.1)

where g ∈ L∞(0, 1), and b(x), c(x) ∈ W 1
∞(0, 1) are given functions satisfying b(x) ≥

β > 0 and c(x) ≥ γ > 0.
Now we define the bilinear form of (2.1) by, for each ϕ, ψ ∈ H1

0 (0, 1),

a(ϕ, ψ) ≡ ε(ϕ′, ψ′)− (bϕ′, ψ) + (cϕ, ψ),

ah(ϕ, ψ) ≡ ε(ϕ′, ψ′)− (b̄ϕ′, ψ) + (c̄ϕ, ψ),

where (·, ·) denotes L2 inner product on (0, 1). Then, the projection Ph : H1
0 → Sh

is defined as

a(φ− Phφ, ψh) = 0, for all ψh ∈ Vh. (2.2)

And we also define the approximation P ε
hφ ≡ φε

h ∈ Sh of solution φ to (2.1), which
we call the P ε

h-projection, as follows :

ah(φ
ε
h, ψh) = a(φ, ψh), for all ψh ∈ Vh. (2.3)

Now, M. Stynes and E. O’Riordan [7] introduced the following L̄-spline {ϕi}n
i=1

and L̄∗-spline {ψi}n
i=1 which constitute bases of Sh and Vh, respectively, satisfying

for i = 1, · · · , n

L̄ϕi ≡ −εϕ′′i − b̄ϕ′i + c̄ϕi = 0 in [0, 1]\{x1, · · · xn},
ϕi(xk) = δk

i for k = 0, · · ·n + 1,

L̄∗ψi ≡ −εψ′′i + b̄ψ′i + c̄ψi = 0 in [0, 1]\{x1, · · · xn},
ψi(xk) = δk

i for k = 0, · · ·n + 1,

where δk
i stands for Kronecker’s delta.

We now define Green’s function Gi = G(x, xi) by the following equation, which
is spanned by {ψi}n

i=1:

ah(w,Gi) = w(xi) for all w ∈ H1
0 (0, 1).
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Remark 1 [7] For each i ∈ {1, · · · , n}, Green’s function Gi(·) ∈ C[0, 1] is char-
acterized by

−εG′′
i (x) + b̄G′

i(x) + c̄Gi(x) = 0 in [0, 1]\{x1, · · · , xn},

Gi(0) = Gi(1) = 0,

lim
x→x+

k

(εG′
i(x)− b̄Gi(x))− lim

x→x−k
(εG′

i(x)− b̄Gi(x)) = −δk
i ,

where x−k ≡ xk − 0 and x+
k ≡ xk + 0. Moreover, Gi(x) lies in Vh.

Lemma 2.1 For each i ∈ {1, · · · , n}, Green’s function Gi(·) satisfies

εG′
i(x)− b̄Gi(x) = εG′

i(0) +

∫ x

0

c̄Gi(t) dt−Hi(x), x ∈ [0, 1]\{x1, · · · xn},

where

Hi(x) =

{
1 if x ≥ xi,
0 if x < xi.

Proof: By Remark 1, we have

∫ x

0

c̄Gi(t) dt =

j−1∑

k=1

∫ xk

xk−1

(
εG′′

i (t)− b̄G′
i(t)

)
dt +

∫ x

xj−1

(
εG′′

i (t)− b̄G′
i(t)

)
dt

=

j−1∑

k=1

[εG′
i(t)− b̄Gi(t)]

xk
xk−1

+ [εG′
i(t)− b̄Gi(t)]

x
xj−1

=
(
εG′

i(x)− b̄Gi(x)
)− εG′

i(0)

+

j−1∑

k=1

[(
εG′

i(x
−
k )− b̄Gi(x

−
k )

)− (
εG′

i(x
+
k )− b̄Gi(x

+
k )

)]
,

which proves the lemma.

Lemma 2.2 For each i ∈ {1, · · · , n} and for arbitrary x ∈ (0, 1), we have

0 ≤ Gi(x) ≤ 1

β
.

Proof: From [7], it follows that Gi(x) ≥ 0 for all i ∈ {1, · · · , n} (cf. the proof of
Lemma 2.4 in this paper). We assume that there exists z ∈ [xj−1, xj] such that
Gi(z) > 1/β. Then, from Lemma 2.1 we have

εG′
i(z) = b̄Gi(z) + εG′

i(0) +

∫ z

0

c̄Gi(t) dt−Hi(z)

≥ b̄Gi(z)− 1

≥ βGi(z)− 1

> 0,
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where we have used the fact that G′
i(0) ≥ 0 because Gi(x) ≥ 0 and Gi(0) = 0.

Hence we obtain 1/β < Gi(z) < Gi(xj). It means that 1/β < Gi(1) from the
inductive argument, which contradicts with Gi(1) = 0.

Lemma 2.3 Let φ be a solution of (2.1). Then we have that ‖φ‖∞ ≤ K‖g‖∞,
where K = 1/ max{β, γ} and for all x ∈ (0, 1), it follows

|φ′(x)| ≤
(

1

ε
C1e

−β
ε
x + C2e

−β
ε
x + C3

)
‖g‖∞,

where

C1 =
2

β
K‖b‖2

∞, C2 =
1

β
(1 + K‖c‖∞ + 2K‖b′‖), C3 =

1

β
(1 + K‖c‖∞).

Proof: We first show that ‖φ‖∞ ≤ 1/ max{β, γ}‖g‖∞. Let y1(x) = K1(1 −
x)‖g‖∞ ± φ(x) and y2(x) = K2‖g‖∞ ± φ(x) where K1, K2 are positive constants.
Then we have that y1(0) ≥ y1(1) = 0 and y2(0) = y2(1) ≥ 0. Hence if K1 = 1/β
and K2 = 1/γ then we find

Ly1 = K1 [b(x) + (1− x)c(x)] ‖g‖∞ ± g
≥ K1β‖g‖∞ ± g
≥ 0,

Ly2 = K2c(x)‖g‖∞ ± g
≥ K2γ‖g‖∞ ± g
≥ 0.

Therefore, we obtain ‖φ‖∞ ≤ K‖g‖∞ by the maximum principle.
Now let g0(x) ≡ g(x)− c(x)φ, and let

g1(x) ≡
∫ x

0

g0(t)e
1
ε
b̂(t) dt, g2(x) ≡

∫ 1

x

g0(t)e
− 1

ε
b̂(t) dt,

where b̂(x) :=

∫ x

0

b(t) dt > 0. Then we get

(−εφ′e
1
ε
b̂(x))′ = (−εφ′′ − b(x)φ′)e

1
ε
b̂(x), (2.4)

(−εφ′e−
1
ε
b̂(x))′ = (−εφ′′ + b(x)φ′)e−

1
ε
b̂(x). (2.5)

From (2.4)-(2.5) we have

∫ x

0

(−εφ′e
1
ε
b̂(t))′ dt = −εφ′(x)e

1
ε
b̂(x) + εφ′(0)e

1
ε
b̂(0) = g1(x), (2.6)

∫ 1

x

(−εφ′e−
1
ε
b̂(t))′ dt = −εφ′(1)e−

1
ε
b̂(1) + εφ′(x)e−

1
ε
b̂(x)

= g2(x) + 2

∫ 1

x

b(t)φ′(t)e−
1
ε
b̂(t) dt

= g2(x) + 2
[
b(t)φ(t)e−

1
ε
b̂(t)

]1

x
− 2κ(x), (2.7)
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where

κ(x) ≡
∫ 1

x

φ(t)

(
b′(t)e−

1
ε
b̂(t) − b(t)2

ε
e−

1
ε
b̂(t)

)
dt.

Rewriting (2.6) as

−εφ′(x) + εφ′(0)e−
1
ε
b̂(x) = g1(x)e−

1
ε
b̂(x), (2.8)

we have the following linear system from (2.7) and (2.8).

εφ′(1)− εφ′(0)e−
1
ε
b̂(1) = −g1(1)e−

1
ε
b̂(1),

−εφ′(1)e−
1
ε
b̂(1) + εφ′(0) = g2(0)− 2κ(0).

Since b̂(1) :=

∫ 1

0

b(t) dt ≥ β > 0, this system is nonsingular so that

(
1 −e−

1
ε
b̂(1)

−e−
1
ε
b̂(1) 1

)−1

=
1

1− e−
2
ε
b̂(1)

(
1 e−

1
ε
b̂(1)

e−
1
ε
b̂(1) 1

)
≥ 0.

Therefore we obtain

( |φ′(1)|
|φ′(0)|

)
≤ 1

ε

1

1− e−
2
ε
b̂(1)

(
1 e−

1
ε
b̂(1)

e−
1
ε
b̂(1) 1

)(
|g1(1)e−

1
ε
b̂(1)|

|g2(0)|+ 2|κ(0)|
)

≤ 1

ε

1

1− e−
2
ε
β

(
1 e−

β
ε

e−
β
ε 1

)(
|g1(1)e−

1
ε
b̂(1)|

|g2(0)|+ 2|κ(0)|
)

.

And we have

∣∣∣g1(1)e−
1
ε
b̂(1)

∣∣∣ =

∣∣∣∣
∫ 1

0

g0(t)e
− 1

ε
[b̂(1)−b̂(t)] dt

∣∣∣∣ ≤ ‖g0‖∞
∫ 1

0

e−
1
ε
[b̂(1)−b̂(t)] dt

≤ ‖g0‖∞
∫ 1

0

e−
β
ε
(1−t) dt

=
ε

β
‖g0‖∞

(
1− e−

β
ε

)
,

|g2(0)| =
∣∣∣∣
∫ 1

0

g0(t)e
− 1

ε
b̂(t) dt

∣∣∣∣ ≤ ‖g0‖∞
∫ 1

0

e−
1
ε
b̂(t) dt

≤ ‖g0‖∞
∫ 1

0

e−
β
ε
t dt

=
ε

β
‖g0‖∞

(
1− e−

β
ε

)
.
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Moreover, we have

|κ(0)| =

∣∣∣∣
∫ 1

0

φ(t)

(
b′(t)e−

1
ε
b̂(t) − b(t)2

ε
e−

1
ε
b̂(t)

)
dt

∣∣∣∣

≤
∣∣∣∣
∫ 1

0

b′(t)φ(t)e−
1
ε
b̂(t) dt

∣∣∣∣ +
1

ε

∣∣∣∣
∫ 1

0

b(t)2φ(t)e−
1
ε
b̂(t) dt

∣∣∣∣

≤ ‖b′‖∞‖φ‖∞
∫ 1

0

e−
1
ε
b̂(t) dt +

1

ε
‖b‖2

∞‖φ‖∞
∫ 1

0

e−
1
ε
b̂(t) dt

≤ ‖b′‖∞‖φ‖∞
∫ 1

0

e−
β
ε
t dt +

1

ε
‖b‖2

∞‖φ‖∞
∫ 1

0

e−
β
ε
t dt

= ‖b′‖∞‖φ‖∞ ε

β
(1− e−

β
ε ) + ‖b‖2

∞‖φ‖∞
1

β
(1− e−

β
ε ).

Since ‖g0‖∞ ≤ (1 + K‖c‖∞)‖g‖∞, we obtain

|φ′(0)| ≤ 1− e−
β
ε

1− e−
2β
ε

[
1 + e−

β
ε

β
‖g0‖∞ +

2

β
‖b′‖∞‖φ‖∞ +

2

εβ
‖b‖2

∞‖φ‖∞
]

≤ 1

1 + e−
β
ε

[
1 + e−

β
ε

β
‖g0‖∞ +

2

β
‖b′‖∞‖φ‖∞ +

2

εβ
‖b‖2

∞‖φ‖∞
]

≤ 1

β
(1 + K‖c‖∞ + 2K‖b′‖)‖g‖∞ +

2

εβ
K‖b‖2

∞‖g‖∞. (2.9)

Finally, we have the following estimate

|g1(x)e−
1
ε
b̂(x)| =

∣∣∣∣
∫ x

0

g0(t)e
− 1

ε
[b̂(x)−b̂(t)] dt

∣∣∣∣ ≤ ‖g0‖∞
∫ x

0

e−
1
ε
[b̂(x)−b̂(t)] dt

≤ ‖g0‖∞
∫ x

0

e−
β
ε
(x−t) dt

≤ ε

β
(1 + K‖c‖∞)‖g‖∞. (2.10)

Combining (2.9) and (2.10) with (2.8), we obtain the desired conclusion.

Theorem 2.1 Let φ and φε
h be solutions of (2.1) and (2.3), respectively. Then

|(φ− φε
h)(xi)| ≤ C0h‖g‖∞, i = 1, 2, · · · , n, (2.11)

where

C0 =
1

β2
‖b′‖∞ (C1 + εC2 + βC3) +

1

β
K‖c′‖∞.

Here, constants Ci, 1 ≤ i ≤ 3, and K are defined in Lemma 2.3.

Proof: From the property of Green’s function, we have

(φ− φε
h)(xi) = ah(φ− φε

h, Gi) = ah(φ,Gi)− (g, Gi)

= −(φ′, (b̄− b)Gi) + (φ, (c̄− c)Gi).
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Hence, we have

|(φ− φε
h)(xi)| ≤ ‖φ′‖L1‖b̄− b‖∞‖Gi‖∞ + ‖φ‖∞‖c̄− c‖L1‖Gi‖∞.

Now we estimate each term in the above. First, note that

‖b̄− b‖∞ ≤ max
i

∫ xi

xi−1

|b′(t)| dt ≤ ‖b′‖∞h,

‖c̄− c‖L1 ≤
∫ 1

0

‖c̄− c‖∞ dt ≤ ‖c′‖∞h.

Since the estimations of ‖φ‖∞ and ‖Gi‖∞ follow from Lemma 2.2 and 2.3, respec-
tively, it suffices to bound ‖φ′‖L1 . From Lemma 2.3, we obtain

‖φ′‖L1 =

∫ 1

0

|φ′(x)|dx

≤
∫ 1

0

(
1

ε
C1e

−β
ε
x + C2e

−β
ε
x + C3

)
‖g‖∞ dx

≤
(

1

β
C1 +

ε

β
C2 + C3

)
‖g‖∞.

Thus the conclusion follows immediately.

Theorem 2.2 Let φ and φε
h be solutions of (2.1) and (2.3), respectively. Then

‖φ− φε
h‖∞ ≤ Ch‖g‖∞,

where C ≡ C(λ) = τ1 + (2− λ)τ2 for λ ∈ [0, 1) and τ1, τ2 satisfies

τ1 =
4

β2 + 4εγ
‖b′‖∞ (C1 + εC2), τ2 =

{
τ if C0 = 0,

max {τ, C0/(1− λ)} otherwise,

where

τ ≡ 1

β + (1− λ)γh
[1 + (‖b′‖∞C3 + K‖c′‖∞)h] .

Moreover if C0 = 0 then we can choose that λ ∈ [0, 1].
(Constants Ci, 0 ≤ i ≤ 3, and K are same as in Theorem 2.1.)

Proof: We prove the theorem using the maximum principle. First, we consider
the case of C0 = 0. Notice that, by the maximum principle, if the function r(x) ≥
0 satisfies L̄(±(φ − φε

h)) ≤ L̄r(x) for each x ∈ (xi−1, xi), then we have ±(φ −
φε

h) ≤ r(x), for all x ∈ [xi−1, xi], because φ(xi−1) = φε
h(xi−1) and φ(xi) = φε

h(xi).
From this property, we derive the maximum norm estimates of local error in each
subinterval.
For each x ∈ (xi−1, xi), we have

L̄(±(φ− φε
h)) = L̄(±φ)− L̄(±φε

h)

= ±(−εφ′′ − b̄φ′ + c̄φ)

= ±{g − (b̄− b)φ′ + (c̄− c)φ}
≤ ‖g‖∞ + ‖b̄− b‖∞|φ′|+ ‖c̄− c‖∞‖φ‖∞
≤ ‖g‖∞ + ‖b′‖∞|φ′|h + ‖c′‖∞‖φ‖∞h.
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Hence we get from Lemma 2.3

L̄(±(φ− φε
h)) ≤

(
1

ε
C1 + C2

)
e−

β
ε
x‖b′‖∞h‖g‖∞
+ [1 + (C3‖b′‖∞ + K‖c′‖∞)h] ‖g‖∞.

Now, for each λ ∈ [0, 1), define r(x) by

r(x) ≡ τ1e
− β

2ε
xh‖g‖∞ + τ2 [h + λxi−1 + (1− λ)xi − x] ‖g‖∞. (2.12)

Then we have

L̄r(x) = τ1

(
−β2

4ε
+

βb̄

2ε
+ c̄

)
e−

β
2ε

xh‖g‖∞
+τ2

[
b̄ + c̄ (h + λxi−1 + (1− λ)xi − x)

] ‖g‖∞
≥ τ1

(
β2

4ε
+ γ

)
e−

β
2ε

xh‖g‖∞ + τ2 [β + (1− λ)γh] ‖g‖∞.

Hence if

τ1 ≥ 4

β2 + 4εγ
(C1 + εC2)‖b′‖∞,

τ2 ≥ 1

β + (1− λ)γh
[1 + (‖b′‖∞C3 + K‖c′‖∞)h] ,

then, noting that e−
β
ε
x ≤ e−

β
2ε

x, we have L̄(±(φ − φε
h)) ≤ L̄r(x) on [xi−1, xi] . In

this case, we can choose that λ ∈ [0, 1] since r(x) ≥ 0 if λ = 1.
Next, consider the case of C0 6= 0. In that case, we also define r(x) by (2.12),

then we obtain a positive lower bound of r(x) satisfying r(x) ≥ τ2(1 − λ)h‖g‖∞.
Hence the function r(x) satisfies the condition of the maximum principle for the
corresponding error estimation if τ2(1 − λ)h‖g‖∞ ≥ C0h‖g‖∞. Thus, we obtain
the following condition on τ2.

τ2 ≥ C0

1− λ
.

Therefore, the proof is completed since |r(x)| ≤ [τ1 + (2− λ)τ2] h‖g‖∞ in [xi−1, xi].

Note that the a priori constant C in this theorem still includes the perturbation
parameter ε, but one can readily see that it is essentially independent of this
parameter. As a special case, we have the following corollary.

Corollary 1 If b(x) ≡ β and c(x) ≡ γ are constant, then

‖φ− φε
h‖∞ ≤ h

β
‖g‖∞. (2.13)

Moreover if β ≥ γh then the constant appeared in the right hand side of (2.13)
gives the minimum value of C(λ) in Theorem 2.2 with respect to all λ ∈ [0, 1].
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Proof: In this case, we have ‖b′‖∞ = ‖c′‖∞ = 0 in Theorem 2.2, it implies that
C0 = 0. Hence, we find

C(λ) =
2− λ

β + (1− λ)γh
, C ′(λ) =

γh− β

[β + (1− λ)γh]2
.

Therefore C(1) = 1/β, and, moreover, C(λ) is a monotone decreasing function, if
β ≥ γh. Thus, we have the desired conclusion immediately.

2.2 Reaction Diffusion Problem

We consider the following linear reaction diffusion problems.

{
Lφ ≡ −εφ′′ + c(x)φ = g in (0, 1),

φ(0) = φ(1) = 0,
(2.14)

where g ∈ L∞(0, 1) and c(x) ∈ W 1
∞(0, 1) with c(x) ≥ γ > 0.

For all ϕ, ψ ∈ H1
0 (0, 1), we define the bilinear form associated with (2.14) by

a(ϕ, ψ) ≡ ε(ϕ′, ψ′) + (cϕ, ψ),

ah(ϕ, ψ) ≡ ε(ϕ′, ψ′) + (c̄ϕ, ψ).

Then, the projection Ph : H1
0 → Sh is defined as

a(φ− Phφ, ψh) = 0, for all ψh ∈ Sh. (2.15)

And we also define the approximation P ε
hφ ≡ φε

h ∈ Sh of solution φ to (2.14), which
we call the P ε

h-projection, as follows :

ah(φ
ε
h, ψh) = a(φ, ψh), for all ψh ∈ Sh. (2.16)

Then we define the basis {ϕi}n
i=1 of Sh, L̄-spline, by the solutions of the problems

for i = 1, · · · , n

−εϕ′′i + c̄ϕi = 0 in [0, 1]\{x1, · · · xn},
ϕi(xk) = δk

i for k = 0, · · ·n + 1.

Remark 2 Note that the linear operator in (2.14) also satisfies the maximum
principle. (see [4] as b(x) ≡ 0)

As previously, we define Green’s function Gi = G(x, xi) which is spanned by {ϕi}n
i=1

by the solution of following equation.

ah(w,Gi) = w(xi) for all w ∈ H1
0 (0, 1). (2.17)

We have the following equivalent formulation of Gi.
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Lemma 2.4 For each i ∈ {1, · · · , n}, Green’s function Gi(·) ∈ C[0, 1] is charac-
terized by

−εG′′
i (x) + c̄Gi(x) = 0 in [0, 1]\{x1, · · · , xn}, (2.18)

Gi(0) = Gi(1) = 0, (2.19)

lim
x→x+

k

(εG′
i(x))− lim

x→x−k
(εG′

i(x)) = −δk
i , (2.20)

where the notation that x−k and x+
k are the same as the one which was defined

in Remark 1. The above Gi(x) is well-defined and lies in Sh with Gi(x) ≥ 0.
Moreover let R = (Rk,j) be a matrix with Rk,j = ah(ϕk, ϕj), (1 ≤ k, j ≤ N) then
‖Gi‖∞ ≤ ‖R−1‖`∞ where ‖ · ‖`∞ means matrix maximum norm.

Proof: For each i ∈ {1, · · · , n}, we set

Gi =
n∑

j=1

αi
jϕj.

Then (2.17) is equivalent to the following linear system.

n∑
j=1

αi
jah(ϕk, ϕj) = δk

i , k = 1, · · · , n. (2.21)

Observing that

Rk,j = ah(ϕk, ϕj) = ε(ϕ′k, ϕ
′
j) + c̄(ϕk, ϕj)

=
n+1∑

l=1

ε[ϕkϕ
′
j]

xl
xl−1

+ (ϕk,−εϕ′′j + c̄ϕj)

=
n+1∑

l=1

ε[ϕkϕ
′
j]

xl
xl−1

,

and noting that R is a tri-diagonal matrix from the property of base functions, we
have

Rk,k = ε[ϕkϕ
′
k]

xk
xk−1

+ ε[ϕkϕ
′
k]

xk+1
xk

= εϕ′k(x
−
k )− εϕ′k(x

+
k ) > 0,

Rk,k−1 = ε[ϕkϕ
′
k−1]

xk
xk−1

= εϕ′k−1(x
−
k ) < 0,

Rk,k+1 = ε[ϕkϕ
′
k+1]

xk+1
xk

= −εϕ′k+1(x
+
k ) < 0. (2.22)

From

ϕk(x) =





sinh
(√

c̄
ε
(x− xk−1)

)
/ sinh

(√
c̄
ε
hk

)
if x ∈ [xk−1, xk]

sinh
(√

c̄
ε
(xk+1 − x)

)
/ sinh

(√
c̄
ε
hk+1

)
if x ∈ [xk, xk+1]

0 otherwise

(2.23)
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we have ϕ′k+1(x
−
k ) = ϕ′k−1(x

+
k ) = 0. Hence (2.21) can be rewritten as

δk
i = αi

k−1Rk,k−1 + αi
kRk,k + αi

k+1Rk,k+1

= ε
(
αi

k−1ϕ
′
k−1 + αi

kϕ
′
k

)
(x−k )− ε

(
αi

kϕ
′
k + αi

k+1ϕ
′
k+1

)
(x+

k )

= ε
(
αi

k−1ϕ
′
k−1 + αi

kϕ
′
k + αi

k+1ϕ
′
k+1

)
(x−k )− ε

(
αi

k−1ϕ
′
k−1 + αi

kϕ
′
k + αi

k+1ϕ
′
k+1

)
(x+

k )

= εG′
i(x

−
k )− εG′

i(x
+
k ).

Therefore it follows that conditions (2.18)-(2.20) are equivalent to (2.17).
Next, we show that the coefficient matrix R is an M-matrix [1]. This can be

easily proved as below by the fact that R is a symmetric and Z-matrix (all off-
diagonal elements are nonpositive) from the definition of ah(·, ·) and (2.22). Since

Rk−1,k = −εϕ′k(x
+
k−1), Rk+1,k = εϕ′k(x

−
k+1),

we obtain

Rk−1,k + Rk,k + Rk+1,k = −εϕ′k(x
+
k−1) + εϕ′k(x

−
k )− εϕ′k(x

+
k ) + εϕ′k(x

−
k+1)

= (

∫ xk+1

xk

+

∫ xk

xk−1

)εϕ′′k(t) dt

= (

∫ xk+1

xk

+

∫ xk

xk−1

)c̄ϕk(t) dt

≥ (

∫ xk+1

xk

+

∫ xk

xk−1

)γϕk(t) dt

> 0.

Hence we have that R is a strictly diagonally dominant matrix, which means R is
an M-matrix. Thus, Gi(x) is well-defined and lies in Sh with Gi(x) ≥ 0, because
M-matrix is nonsingular, all elements of its inverse matrix are nonnegative and the
components of the right-hand side of (2.21) are nonnegative.

Next we show that Gi(x) attains the maximum value at the end point on each
subinterval.

Let

rk(x) =





1
hk

(x− xk−1)− ϕk(x) if x ∈ [xk−1, xk]
1

hk+1
(xk+1 − x)− ϕk(x) if x ∈ [xk, xk+1]

0 otherwise

for k = 1, · · · , n. Then, since rk(xi−1) = rk(xi) = rk(xi+1) = 0 and L̄rk(x) > 0
in each subinterval, we obtain rk(x) ≥ 0 from the maximum principle. And each
Green’s function satisfies Gi(x) = αi

kϕk(x) + αi
k+1ϕk+1(x) on each subinterval.

Therefore it follows that

|αi
kϕk(x) + αi

k+1ϕk+1(x)| ≤ |αi
k|ϕk(x) + |αi

k+1|ϕk+1(x)

≤ max(|αi
k|, |αi

k+1|) · (ϕk(x) + ϕk+1(x))

≤ max(|αi
k|, |αi

k+1|),
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because rk(x) ≥ 0. Thus, we get the following estimate.

‖Gi‖∞ = max
k
|(R−1)k,i| ≤ max

k
max

j
|(R−1)k,j| ≤ max

k

n∑
j=1

|(R−1)k,j| = ‖R−1‖`∞ ,

Therefore the proof is completed.

Theorem 2.3 Let φ and φε
h be solutions of (2.14) and (2.16), respectively. Then

|(φ− φε
h)(xi)| ≤ C0h‖g‖∞, i = 1, 2, · · · , n, (2.24)

where C0 = 1/γ‖R−1‖`∞‖c′‖∞, where R is the same matrix as described in Lemma
2.4.

Proof: From the property of Green’s function, we have

(φ− φε
h)(xi) = ah(φ− φε

h, Gi)

= (φ, (c̄− c)Gi).

Hence the nodal errors can be estimated as

|(φ− φε
h)(xi)| ≤ ‖φ‖∞‖c̄− c‖L1‖Gi‖∞

≤ 1

γ
‖R−1‖`∞‖c′‖∞h‖g‖∞.

For the numerical computation of ‖R−1‖`∞ with guaranteed error bound, refer,
e.g., [3].

Theorem 2.4 Let φ and φε
h be solutions of (2.14) and (2.16), respectively. Then

‖φ− φε
h‖∞ ≤ C(h, ε)‖g‖∞

where

C(h, ε) = max

{
1

γ

(
1 +

1

γ
‖c′‖∞h

)
δ(h, ε) + 2e−

√
γ
ε

hmin
2 C0h, C0h

}
,

δ(h, ε) ≡
(
1− e−

√
γ
ε

h
2

)2

< 1.

Here, C0 is same as in Theorem 2.3.

Proof: We use the maximum principle like the convection diffusion case. We
now constitute a function r(x) which satisfies with L̄(±(φ − φε

h)) ≤ L̄r(x) and
±(φ − φε

h)(xi−1) ≤ r(xi−1), ±(φ − φε
h)(xi) ≤ r(xi) in [xi−1, xi] for i = 1, · · · , n as

below.
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We first estimate L̄(±(φ− φε
h)) as follows.

L̄(±(φ− φε
h)) = L̄(±φ)− L̄(±φε

h) = ±(−εφ′′ + c̄φ) = ±{g + (c̄− c)φ}
≤ ‖g‖∞ + ‖c̄− c‖∞‖φ‖∞
≤ ‖g‖∞ + ‖c′‖∞‖φ‖∞h

≤
(

1 +
1

γ
‖c′‖∞h

)
‖g‖∞, (=: g)

where we have used the estimate ‖φ‖∞ ≤ 1/γ‖g‖∞ which is following by the similar
argument to that in the proof of Lemma 2.3. Here we solve the following ordinary
differential equation with Ĉ0 := C0h‖g‖∞.

−εr′′(x) + c̄r(x) = g in (xi−1, xi),

r(xi−1) = r(xi) = Ĉ0.
(2.25)

Then the solution of (2.25) is written as

r(x) =
1

1 + e−
√

c̄
ε
h

[g

c̄

(
1− e

√
c̄
ε
(xi−1−x) − e

√
c̄
ε
(x−xi) + e−

√
c̄
ε
h
)

+ Ĉ0

(
e
√

c̄
ε
(xi−1−x) + e

√
c̄
ε
(x−xi)

)]
.

Since r′(x) = 0 at x = (xi−1 + xi)/2, we obtain

|r(x)| ≤ 1

1 + e−
√

c̄
ε
h

max

{
g

c̄

(
1− e−

√
c̄
ε

hi
2

)2

+ 2e−
√

c̄
ε

hi
2 Ĉ0, Ĉ0

}
,

where hi = xi−xi−1. Therefore, the maximum principle completes the proof.

3 Numerical Verification Algorithm

The singularly perturbed problem (1.1) is transformed to the following fixed point
equation:

u = F (u),

with the notation F (u) = L−1f(u), where F becomes a compact operator from
L∞(0, 1) ∩ H1

0 (0, 1) to itself. We apply the verification method similar to that in
[2].

Instead of the H1
0 -projection in [2], using the projection Ph defined by (2.2) and

(2.15), we have the following decomposition of the fixed point equation u = F (u).

Phu = PhF (u),

(I − Ph)u = (I − Ph)F (u).

Let ûε
h be an approximate solution of (1.1) which satisfies ah(û

ε
h, ψh) = (f(ûε

h), ψh),
for all ψh ∈ Vh, and let

Nh(u) ≡ Phu− [I − F ′(ûε
h)]

−1
h (Phu− PhF (u)). (3.1)
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Here [I−F ′(ûε
h)]

−1
h is an inverse operator of Ph(I−F ′(ûε

h))|Sh
: Sh → Sh and F ′(ûε

h)
is a Fréchet derivative of F (u) at ûε

h. Then (1.1) is equivalent to the following fixed
point equation.

u = Tu, Tu ≡ Nh(u) + (I − Ph)F (u).

Defining the candidate set, a set expected to include the desired solutions, as
U ≡ ûε

h + Wh + [[α]]∞ ⊂ L∞(0, 1) ∩H1
0 (0, 1), where

Wh ≡
{

wh ∈ Sh : wh =
n∑

i=1

Wiϕi, Wi = [−wi, wi], wi ≥ 0

}
,

[[α]]∞ ≡ {
α̂ ∈ L∞(0, 1) ∩H1

0 (0, 1) : ‖α̂‖∞ ≤ α
}
,

if the condition

Nh(U) ⊂ Uh, (3.2)

(I − Ph)F (U) ⊂ [[α]]∞ (3.3)

holds, then, by Schauder’s fixed point theorem, there exists a function û ∈ U such
that Lû = f(û).

In order to estimate the error ‖φ−Phφ‖∞, we use following triangular inequality

‖φ− Phφ‖∞ ≤ ‖φ− P ε
hφ‖∞ + ‖P ε

hφ− Phφ‖∞. (3.4)

For the first term, we use the estimation already discussed in the previous section.
For the second term, by the fact that a(Phφ, ψh) = ah(P

ε
hφ, ψh), for all ψh ∈ Vh,

it is essentially independent of ε, because of Lemma 2.3, Theorems 2.1 and 2.3.
Actually, it is easily seen that, by using matrices A = (Ai,j) = [a(ϕj, ψi)] and
Ah = (Ah

i,j) = [ah(ϕj, ψi)], we have ‖P ε
hφ−Phφ‖∞ ≤ Ch‖g‖∞, where C := 3‖A−1−

(Ah)−1‖`∞ , which is followed by the properties of basis of Sh, Vh.

From the viewpoint of the effectiveness of computational cost, we usually use
the residual form below instead of the original equation (1.1) [9].

That is, for the singularly perturbed problem (1.1), we define the solution ū of
the following linear singularly perturbed problem.

−εū′′ − b(x)ū′ + c(x)ū = f(ûε
h) in (0, 1),

ū(0) = ū(1) = 0.

Then, defining v0 ≡ ū− ûε
h we get the following estimates

‖v0‖∞ ≤ Ch‖f(ûε
h)‖∞

by the same constant C in Theorems 2.2 and 2.4, because ûε
h coincides with P ε

h-
projection of ū. Thus the concerned problem is reduced to finding w := u − ū
satisfying

−εw′′ − b(x)w′ + c(x)w = f(w + v0 + ûε
h)− f(ûε

h) in (0, 1),
w(0) = w(1) = 0.

(3.5)

Then, since the approximate solution of (3.5) is taken as 0, the candidate set for
the solution is usually taken of the form W ≡ Wh + [[α]]∞.
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4 Numerical Examples

We now present some numerical examples below, to show the effectiveness of the
Theorems 2.2 and 2.4. We employed the residual form (3.5) in our procedures of
verification.

We first consider the following example of the convection diffusion problem.

Example 4.1

L1u ≡ −εu′′ − bu′ + cu = 1− u3 in (0, 1),
u(0) = u(1) = 0,

where b = 1/(2π)2, c = 1.

We omit detailed and actual computational procedures for checking conditions
(3.2) and (3.3) (see, e.g., [2][9] etc.). The approximate solutions are shown in
Figure 1.
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Figure 1: The approximate solutions of Example 4.1.

Table 1 shows the verification results for uniform mesh with n = 999 using
L̄-spline in this paper. We also illustrate, for comparison, in Tables 2 to 3 the
results using the usual verification algorithm with piecewise linear functions as in
[9]. We show that the distribution of mesh size for non-uniform mesh in Figure 3.

In Tables 1 to 3 and 4 to 6, the exact solution is enclosed by ûε
h+Wh+[[α]]∞+v0,

i.e., ”Total”s mean the total error of the approximate solution ûε
h. ”Fail”s in tables

mean that we could not get the solution u with guaranteed error bound, in the sense
of infinite dimension, but we could get the approximate solution with guaranteed
error bound, in the sense of finite dimension.

We next consider the following example of the reaction diffusion problem.

Example 4.2 (Allen-Cahn equation)

L2u ≡ −εu′′ + cu = (c + 1)u2 − u3 in (0, 1),
u(0) = u(1) = 0,
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Table 1: L̄-spline (Uniform) for Example 4.1
1/ε Total α ‖Wh‖∞ ‖v0‖∞
100 4.8819e-2 2.7863e-3 1.9576e-2 3.7979e-2
1000 4.9337e-2 2.7858e-3 1.9554e-2 3.7979e-2
10000 5.1568e-2 2.7913e-3 1.9621e-2 3.7979e-2
100000 6.0336e-2 3.0415e-3 2.0178e-2 3.7979e-2
1000000 6.3029e-2 3.7266e-3 2.1801e-2 3.7979e-2

Table 2: Piecewise Linear (Uniform) for Example 4.1
1/ε Total α ‖Wh‖∞ ‖v0‖∞
100 9.4484e-3 1.0157e-5 1.1025e-4 9.3539e-3
1000 6.4661e-2 6.6864e-4 6.1947e-4 6.3552e-2
10000 9.1327e-1 8.7964e-2 3.8504e-3 8.2299e-1
100000 Fail ∞ ∞ 2.0192e+1
1000000 Fail ∞ ∞ 5.4777e+2

Table 3: Piecewise Linear (Non-Uniform) for Example 4.1
1/ε Total α ‖Wh‖∞ ‖v0‖∞
100 5.1665e-3 5.2703e-6 8.1393e-5 5.0948e-3
1000 2.4911e-2 1.4200e-4 2.9216e-4 2.4568e-2
10000 2.7563e-1 9.4780e-3 1.2795e-3 2.6568e-1
100000 Fail ∞ ∞ 6.7784e-0
1000000 Fail ∞ ∞ 2.0396e+2

where c = 1/10.

The approximate solutions are shown in Figure 2.
Tables 4 to 6 show the comparison of the effectiveness for L̄-spline with uniform

mesh and the usual piecewise linear finite element method with both uniform and
nonuniform meshes for n = 999. Figure 3 shows that the distribution of mesh size
for non-uniform mesh. By these tables, it is seen that if we use the uniformed mesh
then L̄-spline yields always better approximation than the usual piecewise linear
finite element. ”Singular” in Table 5 means that we could not get the approximate
solution with guaranteed error bound, in the sense of finite dimension. As shown
in Figure 4, the usefulness of L̄-spline method should be more and more clear
compared with the usual method when ε tends to be very small.

The numerical computations were carried out on a Dell Precision 650 Work-
station by using INTLAB, a tool box in MATLAB developed by Rump [5] for
self-validating algorithms.
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Figure 3: The distribution of mesh sizes.
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